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Abstract 
We provide an empirical M(Fx,z) relation for clusters having z< 1.2 
We investigate the relative role of sample size versus temperature accuracy in the determination 
of the evolution of the Lx-T relation. 
We study the impact of the sample size, dispersion and amplitude in the scaling laws in the 
fitting of the cluster dn/dz . 
For the complete cosmological modelling of the cluster number counts and correlation function: 
see contribution by Melin et al. 
 
 
 
 
 
 
Working hypotheses 
In all what follows, the clusters are assumed to belong to the Class 1, having a density of 6/deg2 
(see first contribution by Pacaud and PA07) 
We performed an ab initio modelling of the observed number counts as follows: assume (1) a  
cosmological framework (ΛCDM) and a power spectrum along with a transfer function; (2) a 
mass function, (3) a halo model, (4) various scaling evolutionary relations for cluster physics. 
Then, for each redshift and mass range, the predicted luminosities are transformed into XMM 
count-rates using a dedicated plasma code. The C1 selection criteria are finally applied, resulting 
in a simulated observed redshift distribution 
 
 

 
 
 
 
 



 
 
 
Figure 1. Mass-observable relations : is it usable? 
Example: Calibration of the [0.5–2] keV band total flux versus M_200b relation.  
 
Our model provides us with a tool for deriving heuristic mass-observable relations. For this 
purpose, we adopt the very general parameterisation introduced by Hu (2003): 

OBS = OBSO(Md/MO)p(z) eA(z) 
The exact correlations derived from our model are shown for several redshifts with plain lines. 
The overplotted dashed lines show the recovered values from the fit, which is well reprensted by 
functionals of the form: 

p(z) = p0 + p1 z 
A(z) = a0 za1 

 

The fits are better than 15 per cent over the 0.05 <z < 1.2 and 2 × 1013 < M < 2 × 1015 h−1Mo 
ranges. In practice, the intrinsic dispersion of the M–L relation also needs to be taken into 
account. Assuming σln L |M ∼0.6 (Section 5.1), this translates into a dispersion of −45 to +82 
per cent in the flux–mass or count rate–mass relations. Thus, ‘perfect’ flux measurements may 
yield, via this formula, mass accuracies of the order of −60 to +100 per cent.  
Such an empirical relation has obvious useful practical usages. It should be noted, however, that 
extrapolating the formulae in the present form above z > 1.2 is not straightforward as a number 
of prominent low-temperature lines (O VII, FeVII, FeVIII) are redshifted below the 0.5-keV 
boundary, creating discontinuities that cannot be accounted for with the above simple 
functionals. 



 
 
 
 

 
 
 
 
Table 1: Expected accuracy in the determination of the evolution of the LX–T (z) ∝  
E(z)(1 + z)α  relation for various sizes of  10ks surveys, estimated from simulations. 
 
It is assumed that the sample selection function is well determined (see contribution 1 by 
Pacaud), and that the uncertainty on cluster parameters mainly arise from statistical errors. 
The temperature measurements are supposed to come either directly from the 10-ks XMM 
exposures, with the corresponding accuracy derived from the simulation results of Willis et al. 
(2005), or part of them to be improved by subsequent deep XMM observations, assuming an 
uncertainty of 10%; the last column gives the number of such clusters to undergo deep XMM 
pointings. σα is the mean 1σ error on α for a survey realization. 
 
The simulations show that a significant improvement can be reached by increasing the sample 
size, provided that systematic errors can be kept below the level of statistical uncertainty: the 
accuracy on α scales roughly as the square root of the surveyed area. This is a very notable 
result, given that two-third of our clusters have no more than 500 counts available for the spectral 
fit. The spectral accuracy is of the order of 20 per cent below 2 keV, and 50 per cent around 5 
keV (Willis et al. 2005), the latter concerning mostly distant clusters. The simulations further 
show that increasing the accuracy of the temperature measurements does not yield a very 
significant improvement in the evolution of the LX–T relation – compared to the amount of time 
that would be necessary to obtain accurate temperatures for the 0.5 < z < 1 hot clusters. This is 
mostly due to the fact that the dispersion in the LX–T relation itself is large.  
 
 
 

 
 
 



 
 
 
 

Fig. 2 Comparison between X-ray and Sunyaev-Zel’dovich sensitivities in terms of 
limiting cluster mass.  
The red lines show various measured detection probability thresholds for C1 cluster population. 
The blue lines are the predictions for the APEX survey, currently observing the XMM-LSS 
field. These assume a noise r.m.s. of 10μK in two observing bands at 150 and 220GHz. For the 
regime of interest (z < 1), the X-ray observations are at least as efficient as the S-Z ones in terms 
of cluster detection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
Fig. 3. Impact of the scatter in the M–Lx relation on the predicted C1 redshift 
distribution.  
For simplicity, all the dispersion contained in the scaling laws is encapsulated in the M-L 
relation. For the above scatter values, the predicted total number of clusters per square degree 
are: 3.6 (no scatter), 5.1 (0.3) and 8.4 (0.9).  The mean scatter value of 0.6 (adopted in PA07) 
corresponds to a number density of 6.2/deg2. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 4 Predicted dn/dz distribution for the C1 cluster population over 200 deg2. 
The solid green histogram shows the expectations of our cosmological model (WMAP3: σ8 = 
0.74 and self- similar evolution for the Lx-T relation).  Fluctuations around the mean expectation 
are represented by the solid and dotted error bars for respectively the shot noise alone and shot 
noise + sample variance (estimated from Hu & Kravtsov 2003). The blue error bars are for 5 
deg2 (published XMM-LSS sample), while the black ones stand for 200 deg2. For comparison, 
the dashed-line red histogram shows the predictions for a model with WMAP 1st year 
cosmological parameters (σ 8 = 0.85) where the expected cluster density has been lowered by 
assuming a non-evolving Lx-T relation. 
 
 
 



 
 

Figure 5. Impact of the cluster scaling laws in the determination of the Dark Energy 
equation of state (from our model – thus, assuming an infinite number of clusters) 
 
The solid line shows the prediction for the Spergel et al. (2007) cosmology and self-similar 
evolution of the scaling laws. Assuming instead F(z) = E(z) × (1 + z) 0.34  for the L–T evolution, 
which is the 1σ higher bound from the current XMM-LSS data, yields the dot–dashed line. As a 
comparison, the dashed line shows the distribution obtained by keeping self-similar evolution 
but changing the dark energy equation of state from −1 to −0.6. 
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