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I. Direct detection
Why and how?



Why direct detection?

• Characterization of 
planetary atmospheres 
• Needs spectroscopy on 

actual planetary photons 
→ isolate planet from star



Why direct detection?

• Access non-transiting 
planets 
• Opens up a wide range of 

separations (beyond a few 
0.1 au) 

• Complementary with 
transit spectroscopy

Transits 
mostly 
here



Why direct detection?
• Study architecture of 

planetary system 
based on visual orbit 
• Dynamics of planetary 

systems, interactions with 
dust disks, etc. 

• Full orbital solution when 
combined with RV or 
astrometry → direct, 
model-independent 
access to planet mass



Challenge #1: contrast

• Visible: 
reflected light 

• Infrared: 
thermal 
emission 
(blackbody) vis mid-IR



Challenge #2: separation

• 1 au @ 10 pc 
= 0.1 arcsec 

• Theoretically 
within reach of 
10-m class 
telescope



Challenge summary
A firefly close to a lighthouse … 1000 miles away! 

(note: the star never turns off)



Reminder: Fourier optics
entrance 
pupil (P1)

focal 
plane (F1)

reimaged 
pupil (P2)

focal 
plane (F2)

Ψ1(x) = P(x) exp(iϕ(x))

A1(ξ) = 𝓕(Ψ1(x)) Ψ2(x) = 𝓕−1(A1(ξ))

𝓕 𝓕

I2(ξ) = |A2(ξ)|2
intensity = square modulus 

of complex amplitude

telescope back-end instrument

pupil plane image plane

P(x)

[place some 
optics here]



Technique #1: imaging
• Diffraction in circular 

aperture → Airy pattern 

• Angular resolution = size of 
Airy disk: θ = 1.22 λ/D 
• λ = 2 µm, D = 10 m  
→ θ = 0.05" (50 mas) 
        = 1 au at 20 pc 

• Extended pattern → planets 
hidden in stellar glare!

Rayleigh 
criterion

λ/D



The Airy pattern

θ = 1.22 λ/D

: aperture radius

(≃ π/λ D θ, with D the aperture diameter)



Technique #2: interferometry

• Two separated 
telescopes → 
interference fringes 

• Angular resolution set 
by baseline (B): 
θ = 0.5 λ/B 
• λ = 2 µm, B = 100 m  
→ θ = 2 mas

B



The fringe pattern

—> the binary is resolved when the two objects are separated by λ/2B

Resolved binary when crests of 1st packet fall on troughs of 2nd packet

unresolved binary resolved binary

primary fringe packet

secondary 
fringe packet



II. High contrast imaging



Atmospheric windows

KHJ L M NV I



Imaging through the  
Earth atmosphere

• Temperature variations act as 
tiny lenses 

• Distorted wavefront 
• Short exposure: speckles 
• Long exposure: wide PSF

Short exposure Long exposure



Loss of angular resolution
• Fried parameter r0: diameter of 

circular area over which the 
wavefront is « sufficiently flat » 
(variance of the aberration = 1 rad2) 
• r0 ~ 10 cm at good astronomy site 

—> same resolution as 10 cm telescope!

5 cm 10 cm 60 cm 1.2 mD =

La Palma



Atmospheric turbulence
• Wavelength dependence: r0 ∝ λ6/5 

• 10 cm @ 500 nm 
• 50 cm @ 2 µm 
• 4 m @ 10 µm 

• Seeing = FWHM of long 
exposure image 
• Equal to 0.98 λ / r0 

• 1" seeing for r0 = 10 cm @ 500 nm 
• Varies slowly with wavelength (λ−1/5)



Atmospheric turbulence
• Coherence time: t0 = 0.31 r0 / ⟨vwind⟩ 

• Valid under Taylor’s « frozen 
turbulence » hypothesis 

• t0 ≃ 3 msec for r0 = 10 cm and ⟨vwind⟩ = 
10 m/s 

• Isoplanatic angle: θ0 = 0.31 r0 / ⟨h⟩ 
• θ0 ≃ 1.3" for r0 = 10 cm and ⟨h⟩ = 5 km 

• Stars separated by θ0 have different 
short-exposure PSFs



Correction 
needed!
Adaptive optics



Adaptive optics



Strehl ratio
• S = |⟨exp(iφ)⟩|2  

≃ exp(−σφ2) 
• φ = wavefront phase 
• σφ = rms phase on pupil 

• Quantifies image quality 
• ≃ peak intensity ratio wrt 

perfect image 
• Perfect image → S = 1 
• D = r0 → S = 0.36



AO correction
Simulations for MICADO @ ELT

Correction performance drops for fainter stars and shorter wavelengths



Detection in speckle noise?
ESO-3.6m/ComeOn+ (1994) S=0.21

Speckles
Planet



Getting rid of 
speckles
1. Coronagraphy



Coronagraphy



Lyot coronagraph

place occulting mask 
with size a few λ/D

place undersized 
pupil diaphragm

core removed, 
wings attenuated

P1 F1 P2 F2

P1 F1 P2 F2

𝓕



Lyot coronagraph: 
limitations

• Starlight cancellation only partial 
• improving cancellation requires smaller pupil diaphragm, 

i.e., lower throughput 

• Chromatic behavior 
• fixed mask size while diffraction pattern scales as λ 

• Limited inner working angle 
• planets closer than a few λ/D are also blocked



Phase mask coronagraph
• Proposed by Roddier 

(1997) 

• Goal: reach smaller 
inner working angle 
(IWA) 

• Apply 180° phase shift 
to PSF center 

• Ideal mask size  
= 43% of 1st Airy ring  
(0.53 λ/D) 

• Very chromatic design



Lyot vs Roddier

coronagraph
Lyot

coronagraph
Nulling

P3 P4

P1 P2 P3 P4

P2P1

1322 GUYON ET AL.

FIG. 1.ÈThe Lyot coronagraph uses an opaque mask in the image plane, whereas the nulling coronagraph uses a phase mask. Light distribution in the
pupil is very di†erent for the two coronagraphs. For the Lyot coronagraph the light is concentrated inside the pupil near the edge. For the phase mask it is
moved outside the pupil. This Ðgure shows the light distribution in four di†erent planes for both coronagraphs. Plane P1 is the entrance pupil plane ; plane P2
is the focal plane, where the occulting (or phase) mask is ; plane P3 is the second pupil plane, where the ““ Lyot ÏÏ stop is ; and plane P4 is the second focal plane.

pares the two coronagraphs. The Lyot coronagraph, devel-
oped by Lyot for solar corona imaging (Lyot 1939), is the
most common coronagraph used in astronomy. In this
paper, we will consider stellar coronagraphs only. The Lyot
stellar coronagraph uses an opaque mask in the image
plane to remove almost all the light of the star (only the
Airy rings outside the mask are still present). The mask is
usually at least three Airy rings wide. Of course, at this
point, no improvement has been made yet on the detection
of faint light sources near the star, which is the purpose of a
coronagraph.

To understand how the Lyot coronagraph works, the
image of the star in the image plane has to be seen as being
the power spectrum of the pupil complex amplitude (a uni-
formly bright disk). The opaque mask on the central part of
the Airy pattern removes the low-frequency components of
the Fourier transform of the pupil complex amplitude.
Hence, putting an opaque mask on the center of the Airy
pattern increases the relative intensity of the edges of the
pupil in comparison to the center (the edges of the pupil are
di†racting the light away from the central part of the Airy
spot).

The use of a stop in the second pupil plane (after the
mask) can suppress the light contribution from the edge of
the pupil to the Ðnal image. Hence, the Airy rings that were
still present in the Ðrst image plane, outside the mask, are
attenuated. The Ðnal image of the occulted star will be a
dark disk (the mask) surrounded by very faint di†raction
rings. If a light source is far enough from the star so that its
image is outside the mask, its light distribution in the
second pupil plane will be a uniformly bright disk of light
and the pupil stop will remove only a small fraction of its
light. The o†set light source will then be attenuated by a
factor which is far lower than the attenuation of the Airy
rings of the central occulted star, making it easier to detect.

The nulling coronagraph works di†erently. The mask is
not opaque : it is a phase mask which shifts the phase of the
light by 180¡. When the phase mask has the right size,
destructive interference occurs inside the pupil and the light
from the star is sent outside the pupil in the second pupil
plane (see Fig. 1). The nulling coronagraph is not the only
way to use destructive interference on a star in order to
image faint light sources very close to it. The achromatic
interferometric coronagraph (Gay 1996) can cancel out effi-

1999 PASP, 111 :1321È1330
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Lyot 
coronagraph

Roddier 
coronagraph

P1 F1 P2 F2

P1 F1 P2 F2

(before mask) 𝓕



Four Quadrant Phase Mask

Design intrinsically achromatic … but phase shift generally only π at one wavelength. 
Another problem is that planets located on quadrant transitions are also cancelled.

light completely 
rejected outside 

pupil by 
destructive 
interference



Beyond the FQPM
• Quadrants → octants → continuous phase ramp



Vortex phase mask
• Continuous phase ramp from 0 to 4π 

• Main problem: chromaticity of the phase ramp 
(only perfect for one given wavelength)

pears at u= f!2, is relatively unaffected by the vortex
mask when !2"!diff=0.61# /REP. Lens L2 performs
an inverse Fourier transform upon Uj!u ,v", thereby
producing a filtered version of the initial planar fields
in plane FP2:

Uj!u!,v!" = !i#f"−1# #
FP1

Uj!u,v"

$exp$i!u!u + v!v"k/f%dudv. !3"

The Lyot stop could be placed in plane FP2, but the
beam is collimated between L2 and L3, and it is often
practical to place it in plane PP2. Lens L3 performs a
Fourier transform upon the fields in FP2, thereby
producing the imaged fields in plane FP3:

Uj!u",v"" = !i#f"−1# #
PP2

Uj!u!,v!"PLyot!u!,v!"

$exp$− i!u!u" + v!v""k/f%du!dv!. !4"

The Lyot stop has a transmission function
PLyot!u! ,v!"=1 for %!=&u!2+v!2&RLyot and zero oth-
erwise.

To demonstrate the superior performance of the
vortex coronagraph over the occulting Lyot configura-
tion, we first examine two barely resolvable sources
where !1=0, and !2=!diff=0.61# /REP. The field of the
two mutually incoherent sources was computed with
a fast Fourier transform algorithm on an N$N
=2048$2048 computational grid. Soft apertures
(e.g., hyper-Gaussian functions of order 10) were
used to obviate noise attributed to high spatial fre-
quencies. Further, the mask function in plane FP1
was multiplied by cos2!'x /N"cos2!'y /N" to truncate
high spatial frequency noise. The optical design pa-
rameters were #=0.5 (m, f=50 mm, REP=12.5 mm,
RLyot=0.9 REP, ROM=rdiff= f!diff, and A1

2 /A2
2=100.

The image in FP3 for the Lyot coronagraph is shown

in Fig. 3(a). Images for vortex coronagraphs having
topological charges m= 0, 1, 2, and 3 are shown in
Figs. 3(b)–3(d), respectively. The m=2 case provides a
bright image of the weak off-axis source, while elimi-
nating light from the on-axis image.

The superior performance of the m=2 case is at-
tributed to zero intensity values for the starlight ex-
tending over the entire exit pupil of radius REP. This
remarkable result may be found analytically by com-
puting a second-order Hankel transform of the Airy
disk.13 Assuming paraxial rays, we find19

'U1!u!,v!"' = (A1REP
2/%!2, %! ) REP

0, %! & REP
) . !5"

Equation (5) implies that for RLyot*REP the starlight
is completely eliminated from the optical system.
When the planet and star are well resolved the Airy
disk of the planet in plane FP1 will simply experience
a negligible tilt owing to the VPM. Hence the planet
light is essentially unaffected by the VPM, and image
plane FP3 will contain most of the collected planet
light. The fraction of transmitted power of a single
point source was numerically found to be nearly
unity for !)!diff and to vary as !! /!diff"2 for !&!diff.
We note that Eq. (5) may also be obtained by a con-
volution of the pupil function with the Fourier trans-
form of tVC!+" : r−2 exp!i2+".

To detect exoplanets, a coronagraph must be able
to extinguish starlight that is more than 10 million
times brighter than its daughter planet. These cases
are numerically challenging. If numerical noise from
the bright source has a nonneglible value compared
with the weak source signal, then the prediction of
Eq. (5) will be difficult to verify. For example, Figs.
4(a) and 4(b) show the cases when A1

2 /A2
2=106 and

A1
2 /A2

2=108, respectively, and !2=2.2# /REP. Even in
the face of numerical noise both figures demonstrate
significant attenuation of starlight (1) and bright
high-contrast diffraction-limited images of the planet
(2).

One measure of the performance of the corona-
graph may be established by calculating the relative
power in the final image plane, FP3:

, = !S1 + S2"/S2!, !6"

Fig. 2. (a) Intensity profile, 'U!x! ,y!"'2 of a beam contain-
ing an optical vortex. (b) Surface profile of a VPM.

Fig. 3. Comparisons for !2=!diff and A1
2 /A2

2=100. (a)
Lyot coronagraph where ROM=rdiff. (b), (c), (d) Vortex coro-
nagraphs where m=1, m=2, m=3, respectively. In (c) the
starlight is essentially eliminated, revealing a high-
contrast image of the planet when m=2.

Fig. 4. (Color online) Vortex coronagraph images for the
case m=2 and !=2.2# /REP. (a) A1

2 /A2
2=106, RLyot/REP

=0.8. (b) A1
2 /A2

2=108, RLyot/REP=0.6. Field amplitude plots
are shown to aid the eye.
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Vortex phase mask
vortex  

phase mask
Lyot stop coronographic 

image plane

on-axis vortex

no vortex/
off-axis

perfect on-axis cancellation  
for a circular aperture



Vortex phase mask
vortex  

phase mask
Lyot stop coronographic 

image plane

on-axis vortex

no vortex/
off-axis

perfect on-axis cancellation  
for a circular aperture



Achromatic phase mask?
• Sub-wavelength gratings → achromatic half wave plate  

• Another solution is based on Liquid Crystal Polymers

medium theory (EMT2), which is deduced from the
electromagnetic propagation in stratified media the-
ory, allows us to derive these expressions for the ef-
fective indices10:

neff, 2
TE ! !"neff,0

TE#2 "
1
3$#

$%2

%2F2"1 & F#2

' "na
2 & nb

2#2&1'2

, (7)

neff,2
TM ! !"neff,0

TM#2 "
1
3$#

$%2

%2F2"1 & F#2

' $ 1

na
2 &

1

nb
2%2

"neff,0
TM#6"neff,0

TE#2&1'2

. (8)

In addition to the dependence on the wavelength,
we also note the dependence of the effective indices
versus other parameters available in a design proce-
dure: the grating period #, the filling factor F, and the
grating real indices na and nb (see Fig. 2). The wave-
length dependence of the effective indices is conse-
quently also found in the form birefringence (nform.
This phenomenon is called the dispersion of form
birefringence. We must emphasize the term “form.”
Indeed, this property appearing just before the fron-

tier of the resonant domain is essentially given by the
geometry, no longer only by the intrinsic character-
istics of the materials. The key point is that, by
carefully controlling the geometry of the grating
structure, we will be able to tune the form birefrin-
gence to compensate for the hyperbolic dependence of
the phase shift ()1'$, see Eq. (4)] and thus make it
achromatic. This is a good example of refractive-
index engineering.

3. FQPM Implementation: the Four-Quadrant
ZOG (4QZOG)
The implementation of the ZOG phase shifters into
the FQPM is straightforward and represented in
Fig. 3. Let s and p be the vectorial complex amplitude
components of the incoming light. In each of the four
quadrants, the s and p global polarization states can
be decomposed in the TEi and TMi vectorial complex
amplitudes according to the line orientations of the
local grating in the ith quadrant, with i ! 1, . . ., 4.
Indeed, the convention under normal incidence spec-
ifies that the electric field of the TE and TM compo-
nents vibrates parallel and perpendicular to the
grating lines, respectively. We have shown above that
two effective indices, nTEi

and nTMi
, can be assigned to

the corresponding perpendicular polarization states.

Fig. 2. ZOG schematic presenting the main parameters of the
grating: the grating vector |K| ! 2%'# perpendicular to the grat-
ing lines with " being the period, the grating depth h, and the
filling factor F ! a'#. (a) Two AR-layer design, where the AR-layer
thickness is h1 ! h3. and h2 " h3 ! h. (b) One AR-layer design,
where the AR-layer thickness is h1 and h2 ! h. The grating (me-
dium II) is surrounded by the media I (superstrate) and III (sub-
strate). The incident light, making an angle # with the grating
normal, can be decomposed in its TE (transverse electric) and TM
(transverse magnetic) states of polarization.

Fig. 3. 4QZOG implementation: s and p are the vectorial complex
amplitude components of the incoming light of wave vector k. In
each of the four quadrants, the s and p global polarization states
are decomposed in the corresponding TEi and TMi vectorial com-
plex amplitudes according to the local grating line orientations (i is
the quadrant number). Two effective indices nTEi

and nTMi
can be

assigned to the corresponding perpendicular polarization states.
The four gratings engraved on a unique substrate are strictly
identical and implemented in the following way: two of them in two
quadrants along one diagonal are rotated by 90° around their
normals with respect to the two others. This antisymmetrical con-
figuration achieves the FQPM particular focal plane $-phase dis-
tribution (see text for explanations).

1 December 2005 ' Vol. 44, No. 34 ' APPLIED OPTICS 7315

Jones vector for the output components can also be described in
a helical polarization basis, with right-handed (R@) and left-
handed (L’) circularly polarized input fields. In this particular
case and under ideal conditions, we obtain at the output

R@ ¼
0

ei(2!"!=2)

! "
; L’ ¼ e"i(2!þ!=2)

0

" #
: ð9Þ

The Pancharatnam phase clearly appears as the argument of
the exponential, "p ¼ 2!. Therefore, within one revolution,
i.e., ! ¼ 2!, one easily confirms that "p ¼ 2(2!). In addition,
the helical basis allows us to decouple the output polarization
components. This facilitates the forthcoming Fourier analysis.

We demonstrate in Appendix C, thanks to Sonine’s integral
(Sneddon 1951, p. 55), that in the lp ¼ 2 configuration the vortex
propagation up to the relayed pupil plane evolves into a perfect
destructive interference, totally rejecting the starlight outside
the geometric pupil area (we also analytically demonstrate that
the perfect attenuation holds true for even values of lp). Like the
FQ-PM, the theoretical attenuation of the AGPM is therefore
infinite in the perfect achromatic and circular filled pupil case
(Riaud et al. 2001). We have also chosen the lp ¼ 2 case for the
following reason: in order to be achromatic, the space-variant
ZOG local characteristics (grating period, depth, and filling fac-
tor) are well defined and do not tolerate any departure from op-
timal values within the tolerances (see x 4). We note in Figure 5
that only the lp ¼ 2 case affords the required symmetry to ful-
fill this constraint. The other configurations (lp 6¼ 2) all imply a
variation of the grating period that would destroy the achromatic
characteristics of the phase shift. Moreover, such a variation of
the period could lead the grating to exit the subwavelength
domain with dramatic consequences: higher diffraction orders
would show up.

The AGPM implementation of the space-variant ZOG is
thus totally circularly symmetric. The grating vector is constant in
modulus and aligned with the radius. In other words, the AGPM
coronagraph can be seen as a FQ-PM coronagraph in polariza-
tion. Indeed, if we consider the four cardinal points on the AGPM,
the resulting phase shift distribution is analogous to the FQ-PM for
each parallel potentially interfering polarization state (see Fig. 7).
This argument holds true for each azimuth angle and for each ra-
dius, and thus for the whole focal plane.

3. NUMERICAL RESULTS IN A REALISTIC CASE

We have performed realistic numerical simulations that rely
on a three-stage modeling:

1. A ‘‘rigorous coupled wave analysis’’ stage, where the
form birefringence of the local grating is optimized, leading to
the space-variant ZOG Jones matrix JZOG(s, p). At this stage,
the final performance of the coronagraph can already be quan-
tified by the null depth.
2. The analytical polarization treatment based on Jones cal-

culus, which gives the spatial distribution of the linear/helical
polarization components of the incident light. We use for this
step the results obtained in Appendix A.
3. A scalar far-field Fourier propagation coronagraphic code

for each polarization state.

To simulate the grating response and calculate the form bire-
fringence !nform ¼ !nTE"TM in the subwavelength and reso-
nant domain (" & k), scalar theories of diffraction dramatically
fail. The vectorial nature of light must be taken into account,
implying a resolution of theMaxwell equations by the so-called
rigorous coupled wave analysis (RCWA; Moharam & Gaylord
1981). RCWA gives the full diffractive characteristics of the
simulated structure.
The ZOG form birefringence optimization has already been ex-

tensively presented in Mawet et al. (2005) in the context of the
FQ-PM achromatization for theH,K, andN bands (4QZOG).We
focus here on the mostly used K band, but the conclusions are
applicable to other band filters. In Figure 8 we present the RCWA
results for a subwavelength surface-relief grating engraved on
the surface of a diamond (C) or ZnSe substrate and covered by a
&k/4 antireflective (AR) layer of YF3. The latter settles at the
bottom of the grooves and on top of the grating ridges. The null
depth, which characterizes the darkness of the destructive inter-
ference taking place in the relayed pupil plane of the telescope,
takes into account the phase errors with respect to !, #(k) ¼
!"TE"TM(k)" !, and amplitude mismatches q(k) ¼ $TE(k)/
$TM(k) in the following way:

N (k)¼
1"

ffiffiffiffiffiffiffiffi
q(k)

p$ %2 þ #(k)2
ffiffiffiffiffiffiffiffi
q(k)

p

1þ
ffiffiffiffiffiffiffiffi
q(k)

p$ %2 : ð10Þ

Fig. 6.—Pancharatnam phase ramp of the AGPM coronagraph: "p ¼ 2!.
The associated topological charge is lp ¼ 2. Within one revolution around the
optical axis, i.e., ! ¼ 2!, one easily confirms that "p ¼ 2(2!).

Fig. 7.—AGPM scheme and analogy with the FQ-PM coronagraph. The
AGPM can be seen as a polarization FQ-PM. The parallel potentially interfering
polarization states are out of phase according to the FQ-PM focal plane phase
shift distribution. Here "TE and "TM are the output phases of the polarization
components TE and TM such that !"TE"TM ¼ j"TE " "TMj ¼ !.

MAWET ET AL.1194 Vol. 633

Annular Groove Phase Mask  
(AGPM)



Apodization

• So far we’ve been relying on a mask in the focal 
plane, but we can also work in the pupil plane! 

• Apodization 
• principle: modify amplitude or phase of wavefront in pupil 

• goal: redistribute the intensity in the focal plane to make it 
more compact or create a dark region



Amplitude apodization
• Goal: reduce PSF side lobes 

• Degraded angular resolution

𝓕

P(x)



Apodized coronagraph
• Combination of 

apodization 
and focal plane 
amplitude or 
phase mask 

• Apodization 
makes PSF 
more compact 
on the focal 
plane mask



How it’s done

• Microdot apodizer

368 P. Martinez et al.: Design, analysis, and testing of a microdot apodizer for the Apodized Pupil Lyot Coronagraph

Fig. 5. Left: simulation map of the binary apodizer with 5 × 5 µm dots. Right: shadowgraph inspection of the manufactured microdots apodizer
(×50). For the sake of clarity, only a quarter of the apodizer is shown.

Fig. 6. Left: apodizer azimuthally average profile (from center to the edges) using different filters (J, H and narrow H band) compared to specifi-
cation (black curve). Right: corresponding average amplitude error as function of the position using the same filters.

Fig. 7. Top: infrared recorded image of the apodizer.

from 1.7 to 1.2 for the peak rejection and from ∼10 to ∼3 in the
halo. When the Strehl ratio is set to 94% (λ/25 nm rms) while

the apodizer is perfect, the discrepancy is reduced to 1.08 for
the peak rejection and to ∼4 in the halo. It is therefore difficult
to ascertain the dominant source of error. The discrepancy with
theory is certainly a result of a combination of all theses error
sources.

During our laboratory tests, no high frequency noise due to
apodizer pixellation was revealed. However, the simulation anal-
ysis presented in Sect. 3 predicted pixellation noise of 20λ/D
in the coronagraphic image at a contrast level between 10−7

and 10−8 (S = 600). In our case, the contrast level was in-
sufficiently high even between diffraction spikes, to reveal the
predicted noise. Therefore, draw conclusions only about perfor-
mance and suitability of our configuration for HOT (the High
Order Testbench developed at ESO), and even for SPHERE, but
not about the pixellation noise predicted simultaneously by ana-
lytical development (Eqs. (2) and (6)) and simulations. We note
that a smaller pixel size (<5 µm) would certainly help in reduc-
ing the 3% error in the profile, which could potentially improve



Shaped pupils

𝓕

… and 
here

Look for 
planets 

here



Phase apodization
• Act on wavefront phase 

instead of amplitude 

• Can produce 
asymmetric PSF

APP: Apodizing Phase Plate
Fig. 1. Left panel: The anti-symmetric phase pattern of the Apodizing Phase Plate corona-
graph that is used in the vAPP prototype. Right panel: Corresponding theoretical log-scaled
PSF, normalized to its peak flux.

This phase is clearly chromatic with a 1/l term and a dispersion term for the glass.
The vAPP coronagraph instead makes use of the geometric phase, also sometimes called

the vector phase, which is a manifestation of the Pancharatnam-Berry phase [35, 36]. This
approach was previously used for focal-plane phase masks like the 4QPM (with quartz/MgF2
achromatic waveplates) by [37], the 8OPM (with photonic crystals) by [38], the Vector Vortex
Coronagraph by [39], and introduced for the vAPP by [40]. The vector phase arises when a
circularly polarized beam passes through a half-wave retarder and is converted into circularly
polarized light of the opposite handedness. While the circular polarization handedness flip is
independent from the half-wave retarder’s axis orientation, the absolute phase of the emergent
beam is directly determined by it. In this way, even a perfectly flat optic can induce a phase
pattern. Moreover, as the phase is only determined by the fast axis orientation, it is inherently
achromatic.

The electric components of a beam of polarized light can be described by a Jones vector

E =

✓
Ex

Ey

◆
. Using the Jones formalism to express the effect of a half-wave plate (HWP) with a

fast axis oriented at qHWP on circular polarization states we can write

Eout = Jrot(�qHWP)JHWP Jrot(qHWP)Ein,circular,± (2)

where the rotation matrix is

Jrot (q) =
✓

cosq sinq
�sinq cosq

◆
, (3)

the Jones matrix of the HWP

JHWP =

✓
exp(�ip/2) 0

0 exp(ip/2)

◆
. (4)

Adopting circularly polarized input states

Ein,circular,± =
1p
2

✓
1
±i

◆
(5)

gives us

Eout = � ip
2

✓
1
⌥i

◆
exp(⌥i2qHWP) , (6)
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Getting rid of 
speckles 

2. Observing strategies



Solution: PSF subtraction
• Simplest concept: observe a 

reference star 
• —> ‘Reference-star Differential 

Imaging’ (RDI) 

• Reference must be similar to 
science target 

• Procedure 
• Scale the reference PSF (flux) 

• Subtract it from science observation

β Pic

α Pic

β Pic − α Pic



Limitations of RDI
• No perfect reference star 

• Should be of same magnitude, color and position as science target 

• Time spent on reference star is « lost » (no planetary photon) 

• Atmospheric conditions change with time 

• Telescope/instrument aberrations also change with time



Three differential solutions
• Goal: keep observing the same target  

(no reference star) 

• Method: tune an observing parameter to 
discriminate between stellar PSF and planet 
• Angular differential imaging (ADI)  

• Spectral differential imaging (SDI)  

• Polarimetric differential imaging (PDI) 

• [note: some additional techniques not explained here]



Angular differential imaging
• Use field rotation while 

keeping telescope fixed 
• alt-az telescope, disabling 

field tracking mode 

• Planet moves around on-
axis star as a function of 
time (following the so-
called parallactic* angle) 

• Diffraction pattern & 
quasi-static speckles 
stay at fixed position

Marois et al. 2006

*parallactic angle = the angle between the great circle through a 
celestial object and the zenith, and the hour circle of the object



Classical ADI algorithm



Pros and cons of ADI
+ Works with any type of planet (no specific feature) 

+ Does not require specific hardware 

− Does not work well for stars far from zenith (small variation of the 
parallactic angle) 

− Limited inner working angle (planet must move by more than 1 λ/D 
in the field for ADI to work) 

− Speckle pattern evolves with time

λ/D



Speckle decorrelation
t0 + 10 min t0 + 100 mint0

(t0 + 10 min) − t0 (t0 + 100 min) − t0



Spectral differential imaging
• Based on Integral Field 

Spectrograph (IFS) 
observations 
• provides field image as function of 

wavelength (« image cube ») 

• Diffraction and speckle pattern 
scale as function of wavelength 
• speckle pattern moves away from 

star with increasing wavelength 

• Exoplanet position is fixed 
• can be distinguished from speckles

Sparks & Ford 2002 
« spectral deconvolution »



SDI in practice

Observed (x,λ) slice

Rescaled (x,λ) slice

Wide wavelength range → see speckles stretching vs λ

stretch image



Pros and cons of SDI
+ Works with any type of planet  

(no specific feature needed in planet spectrum) 

+ No differential aberrations / simultaneous observations 

+ End product = spectrum of the planet! 
• Detect and characterize planet at the same time 

− Speckle pattern not perfectly constant over wavelength 

− Limited inner and outer working angles  
(depend on wavelength range and spectral resolution)



Cross-correlation: an 
alternative

• Developed first for non-imaging 
spectroscopy 

• Principle: look for specific, 
planet-related features in 
spectral domain 
• use correlation between template 

and data to identify the presence of 
specific absorption lines or bands 

• Only partly leverages the 
spatially-resolved nature of the 
SDI data set

Sparks & Ford 2002



Cross-correlation: illustration
very different from stellar (33). If the HR8799
planets formed by GI, the spectrum of HR8799c
should indicate a stellar composition and, in par-
ticular, a stellar C/O ratio (assumed to be equal
to that of the Sun for HR8799) (34).

Under core accretion (CA), planets form in
a multistep process involving the initial forma-
tion of a core (on the order of 10 Earth-masses
of heavy elements) followed by runaway accre-
tion, primarily of gas supplied by the disk. When
the disk is no longer able to supply a substantial
amount of material, the newly formed planet is
isolated from what remains of the disk. The final
atmospheric composition of a planet formed by
CA depends on its location within the disk and
the contribution of solids during the runaway ac-
cretion phase. A variety of compositions are pos-
sible (including stellar C/O with sufficient solid
accretion), but a nonstellar composition is highly
likely for massive giant planets.

Within the disk that formed the HR8799
planets, there are three important boundaries: the
H2O [~10 astronomical units (AU)],CO2 (~90AU),
and CO (~600 AU) frost lines. The planets cur-
rently orbit their star between 15 and 70 AU;
therefore, are all located between the H2O and
CO2 lines where the gas-phase C and O abun-
dances in the disk would have been reduced
through the formation of ice and carbon and sili-
cate grains (with CO and CO2 remaining in the
gas phase). Therefore, in the CA scenario, plan-
etary atmospheres acquired through gas-only ac-
cretion will have substellar C and O abundances
but superstellar C/O ratios, because water ice
is more abundant than carbon-bearing grains. A
simple model of ice formation suggests that the
disk gas-phase C/O ratio ~0.9 (35). Increasing the
fraction of the atmosphere acquired by solid ac-
cretion can lead to superstellar values of both C
and O, with the C abundance rising more slowly
than that of O, and an overall decrease in C/O (35).
Between the CO2 and CO ice-lines, the abun-
dances follow a similar pattern.

To explore the consequences of nonstellar C
and O abundances, we made a grid of planetary
atmosphere models following that of Barman et al.
(14) but using the C and O values predicted by
(35) for different ratios of solid to gas accretion,
with C/O ranging from 0.45 to 1 (tables S1 and
S2). Again, we assumed that the C and O abun-
dances of HR 8799A are solar (15, 32, 34).
We found the best fit from this grid of model
atmosphere spectra by minimizing c2 (Fig. 4).
Though a comprehensive range of C and O
values, independent of any disk-chemistry mod-
el, has not been explored, the results from
these fits suggest that the C/O ratio is certainly
less than 1 and not substellar, but is probably
larger than the solar/stellar ratio with substellar
C and O.

Although it is fairly straightforward to rule
out the extrema of C/O ratios, understanding the
uncertainty in our C/O measurement is less so.
In addition to noise in the data, the uncertainties
in temperature and surface gravity also contribute

to measurement errors in C and O, as line depths
are sensitive to both of these bulk parameters. To
marginalize over the temperature and gravity un-
certainties, we expanded the grid of atmosphere
models (with abundances given in table S1) to
include temperatures of 1000 to 1200K and log(g)
of 3.5 to 4.0. We then performed a Monte Carlo
simulation by resampling the spectral data from
Gaussian distributions with widths determined
by the (uncorrelated) uncertainties for all wave-
length channels. We fit each resampled spectrum
using the model grid and recorded the best-fit
abundances. The resulting estimate (and un-
certainty) for the C/O ratio is 0:65þ0:10

−0:05 , which
is marginally greater than the assumed stellar
ratio (~0.55).

Measuring abundances is complicated, and
model atmospheres have not been thoroughly
tested for systematic under- or overestimation of

C/O ratios in substellar objects. However, given
the dominance of H2O, CO, and CH4 opacities
in their atmospheres, large variations in C/O
should be easier to discern in brown dwarfs and
giant planets than in stars (36). Planet migration
and chemical evolutionwithin the disk canmuddy
conclusions based on composition (37), as can
core dredging, whichmay be important in planets
more massive than Jupiter (38). With these ca-
veats in mind, the above analysis rules out a plan-
etary atmosphere for HR8799c that formed by
gas-only accretion during a CA process at its
current location (C/O > 0.9) and marginally ex-
cludes an atmosphere that formed from extreme
amounts of solid accretion (C/O < 0.6). Between
these extreme predictions, the picture is more
complicated, but the enhanced C/O ratio and the
depleted C andO levels tend to favor a history in
which the planet formed via CA. In this case,
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Fig. 3. (Top) Pure H2O (blue), CO (green), and CH4 (orange) synthetic spectra demonstrate the
predicted location of absorption lines (14). The filtered spectrum of HR 8799c is shown in red. A filtered
model atmosphere spectrum of mostly H2O and CO is overplotted in black. Also shown is a spectrum of a
bright speckle (black trace at bottom), scaled such that the variance is equal to the variance in a
featureless region of HR 8799c. (Bottom) Cross-correlation functions for the spectrum of HR 8799c and
the synthetic spectra shown in the top panel (solid curves), along with a baseline cross-correlation
between the planet spectrum and a bright speckle (dotted curve). The cross-correlation with the H2O-
only template covered the entire observed wavelength range. Correlations with the CO and CH4
templates were performed only over wavelength regions with strong lines (CH4: l > 2.18 mm; CO: l >
2.29 mm). Large cross-correlation peaks are found for the pure CO and H2O templates, as expected. The
CO-only template produces two smaller symmetric peaks at T 207 km s−1; this velocity corresponds to
the near-equal line spacing of the CO lines across the (2,0) bandhead starting at 2.29 mm. Similar near-
equal line spacing occurs for other CO bandheads [that is, the (3,1) bandhead at 2.32 mm], resulting in
the ringing behavior seen in the cross-correlation. No peaks in the correlations were found with any of
the three CH4 templates or the speckle spectrum (this is true for any subset of the observed wavelength
range used in this work). Cross-correlation is not required to detect molecular lines in our spectrum;
however, this exercise aids in quantifying the relative detections (or nondetection, in the case of CH4)
when lines from individual molecules overlap.
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Polarimetric differential 
imaging

• Reflected light from planet is partially 
polarized 
• Typically 10% polarization 

• Star produces unpolarized light 

• Can be exploited by polarimetric imager

Kuhn et al. 2001



Pros and cons of PDI
+ Speckle subtraction can be very good 

+ No limitation in inner or outer working angle 

− Small fraction of planet light is polarized  
→ low sensitivity 

− Works only in reflected light (best in visible range) 

− Requires specific, non-standard hardware


