Master in Space Sciences - Academic year 2021-2022

SPAT0063 Introduction to exoplanetology

Lecture 6: Direct exoplanet detection methods (1/2) April 26th, 2022

Olivier Absil

FNRS Senior Research Associate — STAR Institute olivier.absil@uliege.be

Outline

- I. Direct detection: why and how?
- II. High contrast imaging
 - I. Coronagraphy
 - II. Observing strategies
 - III. Image processing

III. Main results from high-contrast imaging

I. Direct detection

Why and how?

Why direct detection?

- Characterization of planetary atmospheres
 - Needs spectroscopy on actual planetary photons
 → isolate planet from star

Why direct detection?

Transits

mostly

here

- Access non-transiting planets
 - Opens up a wide range of separations (beyond a few 0.1 au)
 - Complementary with transit spectroscopy

Why direct detection?

- Study architecture of planetary system based on visual orbit
 - Dynamics of planetary systems, interactions with dust disks, etc.
 - Full orbital solution when combined with RV or astrometry → direct, model-independent access to planet mass

Challenge #1: contrast

- Visible: reflected light
- Infrared: thermal emission (blackbody)

Challenge #2: separation

- 1 au @ 10 pc
 = 0.1 arcsec
- Theoretically within reach of 10-m class telescope

Challenge summary

A firefly close to a lighthouse ... 1000 miles away!

(note: the star never turns off)

Reminder: Fourier optics

Technique #1: imaging

 Diffraction in circular aperture → Airy pattern

- Angular resolution = size of Airy disk: $\theta = 1.22 \lambda/D$
 - λ = 2 µm, D = 10 m
 → θ = 0.05" (50 mas)
 = 1 au at 20 pc
 - Extended pattern → planets hidden in stellar glare!

Rayleigh criterion

The Airy pattern

Technique #2: interferometry

- Two separated telescopes → interference fringes
- Angular resolution set by baseline (B): $\theta = 0.5 \lambda/B$
 - $\lambda = 2 \mu m$, B = 100 m $\rightarrow \theta = 2 mas$

The fringe pattern

Resolved binary when crests of 1st packet fall on troughs of 2nd packet

--> the binary is resolved when the two objects are separated by $\lambda/2B$

II. High contrast imaging

Atmospheric windows

Imaging through the Earth atmosphere

- Temperature variations act as tiny lenses
- Distorted wavefront
 - Short exposure: speckles
 - Long exposure: wide PSF

Loss of angular resolution

- Fried parameter r₀: diameter of circular area over which the wavefront is « sufficiently flat » (variance of the aberration = 1 rad²)
 - r₀ ~ 10 cm at good astronomy site
 —> same resolution as 10 cm telescope!

Atmospheric turbulence

- Wavelength dependence: $r_0 \, \propto \, \lambda^{6/5}$
 - 10 cm @ 500 nm
 - 50 cm @ 2 µm
 - 4 m @ 10 µm
- Seeing = FWHM of long exposure image
 - Equal to 0.98 λ / r_0
 - 1" seeing for $r_0 = 10 \text{ cm} @ 500 \text{ nm}$
 - Varies slowly with wavelength ($\lambda^{-1/5}$)

Atmospheric turbulence

- Coherence time: $t_0 = 0.31 r_0 / \langle v_{wind} \rangle$
 - Valid under Taylor's « frozen turbulence » hypothesis
 - $t_0 \approx 3 \text{ msec for } r_0 = 10 \text{ cm and } \langle v_{wind} \rangle = 10 \text{ m/s}$
- Isoplanatic angle: $\theta_0 = 0.31 r_0 / \langle h \rangle$
 - $\theta_0 \approx 1.3$ " for $r_0 = 10$ cm and $\langle h \rangle = 5$ km
 - Stars separated by θ₀ have different short-exposure PSFs

Correction needed!

Adaptive optics

Adaptive optics

Strehl ratio

- $S = |\langle exp(i\phi) \rangle|^2$ $\approx exp(-\sigma_{\phi}^2)$
 - ϕ = wavefront phase
 - $\sigma_{\varphi} = rms$ phase on pupil
- Quantifies image quality
 - ~ peak intensity ratio wrt perfect image
 - Perfect image \rightarrow S = 1
 - $D = r_0 \rightarrow S = 0.36$

AO correction

Simulations for MICADO @ ELT

Correction performance drops for fainter stars and shorter wavelengths

Detection in speckle noise?

Getting rid of speckles

1. Coronagraphy

Coronagraphy

Lyot coronagraph

Lyot coronagraph: limitations

- Starlight cancellation only partial
 - improving cancellation requires smaller pupil diaphragm, i.e., lower throughput
- Chromatic behavior
 - fixed mask size while diffraction pattern scales as λ
- Limited inner working angle
 - planets closer than a few λ/D are also blocked

Phase mask coronagraph

- Proposed by Roddier (1997)
- Goal: reach smaller inner working angle (IWA)
- Apply 180° phase shift to PSF center
- Ideal mask size
 = 43% of 1st Airy ring (0.53 λ/D)
- Very chromatic design

Lyot vs Roddier

Four Quadrant Phase Mask

light completely rejected outside pupil by destructive interference

Design intrinsically achromatic ... but phase shift generally only π at one wavelength. Another problem is that planets located on quadrant transitions are also cancelled.

Beyond the FQPM

• Quadrants \rightarrow octants \rightarrow continuous phase ramp

Vortex phase mask

- Continuous phase ramp from 0 to 4π
- Main problem: chromaticity of the phase ramp (only perfect for one given wavelength)

Vortex phase mask

perfect on-axis cancellation for a circular aperture

Vortex phase mask

perfect on-axis cancellation for a circular aperture

Achromatic phase mask?

• Sub-wavelength gratings \rightarrow achromatic half wave plate

• Another solution is based on Liquid Crystal Polymers

Apodization

- So far we've been relying on a mask in the focal plane, but we can also work in the pupil plane!
- Apodization
 - principle: modify amplitude or phase of wavefront in pupil
 - goal: redistribute the intensity in the focal plane to make it more compact or create a dark region

Amplitude apodization

 $P(\mathbf{x})$ Goal: reduce PSF side lobes а 0.8 Degraded angular resolution 0.6 0.4 b 84 43 0.2 43 С 43 2 10 0.1 0.2 0.3 0.4 41 42 -0.3 2 8 -2 43-43 44 43 42 44 14 14 14 14 14 14 14 10 Di l -0 15 -4 64 43 -6 82 41 -8 2 80 41 -10 42 43 44 -12 43 43 44 43 42 44 49 40 62 63 -6

F

10

с

Apodized coronagraph

- Combination of apodization and focal plane amplitude or phase mask
- Apodization makes PSF
 more compact
 on the focal
 plane mask

Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC)

How it's done

• Microdot apodizer

Shaped pupils

Phase apodization

- Act on wavefront phase instead of amplitude
- Can produce
 asymmetric PSF

Getting rid of speckles

2. Observing strategies

Solution: PSF subtraction

- Simplest concept: observe a reference star
 - —> 'Reference-star Differential Imaging' (RDI)
 - Reference must be similar to science target
- Procedure
 - Scale the reference PSF (flux)
 - Subtract it from science observation

Limitations of RDI

- No perfect reference star
 - Should be of same magnitude, color and position as science target
- Time spent on reference star is « lost » (no planetary photon)
- Atmospheric conditions change with time
- Telescope/instrument aberrations also change with time

Three differential solutions

- Goal: keep observing the same target (no reference star)
- Method: tune an observing parameter to discriminate between stellar PSF and planet
 - Angular differential imaging (ADI)
 - Spectral differential imaging (SDI)
 - Polarimetric differential imaging (PDI)
 - [note: some additional techniques not explained here]

Angular differential imaging

- Use field rotation while keeping telescope fixed
 - alt-az telescope, disabling field tracking mode
- Planet moves around onaxis star as a function of time (following the socalled parallactic* angle)
- Diffraction pattern & quasi-static speckles stay at fixed position

*parallactic angle = the angle between the great circle through a celestial object and the zenith, and the hour circle of the object

Classical ADI algorithm

Pros and cons of ADI

- + Works with any type of planet (no specific feature)
- + Does not require specific hardware
- Does not work well for stars far from zenith (small variation of the parallactic angle)
- Limited inner working angle (planet must move by more than 1 λ/D in the field for ADI to work)

- Speckle pattern evolves with time

Speckle decorrelation

Spectral differential imaging

- Based on Integral Field Spectrograph (IFS) observations
 - provides field image as function of wavelength (« image cube »)
- Diffraction and speckle pattern scale as function of wavelength
 - speckle pattern moves away from star with increasing wavelength
- Exoplanet position is fixed
 - can be distinguished from speckles

SDI in practice

Wide wavelength range \rightarrow see speckles stretching vs λ

Observed (x,λ) slice

Rescaled (x,λ) slice

Pros and cons of SDI

- Works with any type of planet
 (no specific feature needed in planet spectrum)
- + No differential aberrations / simultaneous observations
- + End product = spectrum of the planet!
 - Detect and characterize planet at the same time
- Speckle pattern not perfectly constant over wavelength
- Limited inner and outer working angles
 (depend on wavelength range and spectral resolution)

Cross-correlation: an alternative

- Developed first for non-imaging spectroscopy
- Principle: look for specific, planet-related features in spectral domain
 - use correlation between template and data to identify the presence of specific absorption lines or bands
- Only partly leverages the spatially-resolved nature of the SDI data set

Cross-correlation: illustration

Konopacky et al. 2013

Polarimetric differential imaging

- Reflected light from planet is partially polarized
 - Typically 10% polarization
- Star produces unpolarized light

Can be exploited by polarimetric imager

Kuhn et al. 2001

Pros and cons of PDI

- + Speckle subtraction can be very good
- + No limitation in inner or outer working angle
- Small fraction of planet light is polarized
 → low sensitivity
- Works only in reflected light (best in visible range)
- Requires specific, non-standard hardware