SPAT0063 Introduction to exoplanetology

Lecture 6: Direct exoplanet detection methods (1/2) April 26th, 2022

Olivier Absil

FNRS Senior Research Associate — STAR Institute olivier.absil@uliege.be

Outline

I. Direct detection: why and how?
II. High contrast imaging
I. Coronagraphy
II. Observing strategies
III. Image processing
III. Main results from high-contrast imaging

I. Direct detection

Why and how?

Why direct detection?

- Characterization of planetary atmospheres
- Needs spectroscopy on actual planetary photons \rightarrow isolate planet from star

Why direct detection?

Transits
mostly
here

- Access non-transiting planets
- Opens up a wide range of separations (beyond a few $0.1 \mathrm{au})$
- Complementary with transit spectroscopy

Why direct detection?

- Study architecture of planetary system based on visual orbit
- Dynamics of planetary systems, interactions with dust disks, etc.
- Full orbital solution when combined with RV or astrometry \rightarrow direct, model-independent access to planet mass

Challenge \#1: contrast

- Visible: reflected light
- Infrared: thermal emission (blackbody)

Challenge \#2: separation

- 1 au @ 10 pc $=0.1 \operatorname{arcsec}$
- Theoretically within reach of 10-m class telescope

Challenge summary

A firefly close to a lighthouse ... 1000 miles away!

(note: the star never turns off)

Reminder: Fourier optics

Technique \#1: imaging

- Diffraction in circular aperture \rightarrow Airy pattern

(a)

(b)
- Angular resolution = size of Airy disk: $\theta=1.22 \lambda / D$
- $\lambda=2 \mu \mathrm{~m}, \mathrm{D}=10 \mathrm{~m}$
$\rightarrow \theta=0.05 "$ (50 mas)
$=1$ au at 20 pc
- Extended pattern \rightarrow planets hidden in stellar glare!

Rayleigh
criterion

The Airy pattern

$$
I(\theta)=I_{0}\left(\frac{2 J_{1}(k a \sin \theta)}{k a \sin \theta}\right)^{2}=I_{0}\left(\frac{2 J_{1}(x)}{x}\right)^{2} \quad \begin{aligned}
& k=2 \pi / \lambda \\
& a: \text { aperture radius }
\end{aligned}
$$

Technique \#2: interferometry

- Two separated telescopes \rightarrow interference fringes
- Angular resolution set by baseline (B):
$\theta=0.5 \lambda / B$

- $\lambda=2 \mu \mathrm{~m}, \mathrm{~B}=100 \mathrm{~m}$
$\rightarrow \theta=2 \mathrm{mas}$

The fringe pattern

Resolved binary when crests of 1st packet fall on troughs of 2nd packet

\longrightarrow the binary is resolved when the two objects are separated by $\lambda / 2 B$

Atmospheric windows

Imaging through the Earth atmosphere

- Temperature variations act as tiny lenses
- Distorted wavefront
- Short exposure: speckles
- Long exposure: wide PSF

Short exposure Long exposure

Loss of angular resolution

- Fried parameter ro: diameter of circular area over which the wavefront is «sufficiently flat » (variance of the aberration $=1 \mathrm{rad}^{2}$)
- $r_{0} \sim 10 \mathrm{~cm}$ at good astronomy site
-> same resolution as 10 cm telescope!

$D=5 \mathrm{~cm} \quad 10 \mathrm{~cm}$
60 cm
1.2 m

Atmospheric turbulence

- Wavelength dependence: $r_{0} \propto \lambda^{6 / 5}$
- 10 cm @ 500 nm
- 50 cm @ $2 \mu \mathrm{~m}$
- 4 m @ $10 \mu \mathrm{~m}$
- Seeing $=$ FWHM of long exposure image
- Equal to 0.98λ / ro

- 1 " seeing for $\mathrm{r}_{0}=10 \mathrm{~cm} @ 500 \mathrm{~nm}$
- Varies slowly with wavelength ($\lambda^{-1 / 5}$)

Atmospheric turbulence

- Coherence time: $\mathrm{t}_{0}=0.31 \mathrm{ro} /\left\langle\mathrm{V}_{\text {wind }}\right\rangle$
- Valid under Taylor's « frozen turbulence » hypothesis
- $t_{0} \simeq 3 \mathrm{msec}$ for $r_{0}=10 \mathrm{~cm}$ and $\left\langle\mathrm{V}_{\text {wind }}\right\rangle=$ $10 \mathrm{~m} / \mathrm{s}$
- Isoplanatic angle: $\theta_{0}=0.31 r_{0} /\langle h\rangle$
- $\theta_{0} \simeq 1.3^{\prime \prime}$ for $r_{0}=10 \mathrm{~cm}$ and $\langle h\rangle=5 \mathrm{~km}$
- Stars separated by θ_{0} have different short-exposure PSFs

Correction needed!

Adaptive optics

Adaptive optics

Strehl ratio

- $S=|\langle\exp (i \phi)\rangle|^{2}$
$\simeq \exp \left(-\sigma_{\phi}{ }^{2}\right)$
- $\phi=$ wavefront phase
- $\sigma_{\phi}=r m s$ phase on pupil
- Quantifies image quality
- \simeq peak intensity ratio wrt perfect image

- Perfect image $\rightarrow S=1$
- $D=r_{0} \rightarrow S=0.36$

AO correction

Simulations for MICADO @ ELT

Correction performance drops for fainter stars and shorter wavelengths

Detection in speckle noise?

Getting rid of speckles
 1. Coronagraphy

Coronagraphy

Lyot coronagraph

Lyot coronagraph: limitations

- Starlight cancellation only partial
- improving cancellation requires smaller pupil diaphragm, i.e., lower throughput
- Chromatic behavior
- fixed mask size while diffraction pattern scales as λ
- Limited inner working angle
- planets closer than a few λ / D are also blocked

Phase mask coronagraph

- Proposed by Roddier (1997)
- Goal: reach smaller inner working angle (IWA)
- Apply 180° phase shift to PSF center
- Ideal mask size
= 43\% of 1st Airy ring (0.53 λ / D)
- Very chromatic design

Lyot vs Roddier

Four Quadrant Phase Mask

light completely rejected outside pupil by destructive interference

Design intrinsically achromatic ... but phase shift generally only π at one wavelength. Another problem is that planets located on quadrant transitions are also cancelled.

Beyond the FQPM

- Quadrants \rightarrow octants \rightarrow continuous phase ramp

Vortex phase mask

- Continuous phase ramp from 0 to 4π
- Main problem: chromaticity of the phase ramp (only perfect for one given wavelength)

Vortex phase mask

perfect on-axis cancellation for a circular aperture

Vortex phase mask

vortex

Lyot stop

coronographic image plane

Achromatic phase mask?

- Sub-wavelength gratings \rightarrow achromatic half wave plate

- Another solution is based on Liquid Crystal Polymers

Apodization

- So far we've been relying on a mask in the focal plane, but we can also work in the pupil plane!
- Apodization
- principle: modify amplitude or phase of wavefront in pupil
- goal: redistribute the intensity in the focal plane to make it more compact or create a dark region

Amplitude apodization

- Goal: reduce PSF side lobes
- Degraded angular resolution

Apodized coronagraph

- Combination of apodization and focal plane amplitude or phase mask
- Apodization makes PSF more compact on the focal

Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC)
 plane mask

How it's done

- Microdot apodizer

Shaped pupils

Shaped Pupil

Normalized PSF from Ripple3

Phase apodization

- Act on wavefront phase instead of amplitude
- Can produce asymmetric PSF

Theoretical PSF

APP: Apodizing Phase Plate

Coronagraph types

Getting rid of speckles

2. Observing strategies

Solution: PSF subtraction

- Simplest concept: observe a reference star
- —> 'Reference-star Differential Imaging' (RDI)
- Reference must be similar to science target
- Procedure
- Scale the reference PSF (flux)
- Subtract it from science observation

Limitations of RDI

- No perfect reference star
- Should be of same magnitude, color and position as science target
- Time spent on reference star is « lost » (no planetary photon)
- Atmospheric conditions change with time
- Telescope/instrument aberrations also change with time

Three differential solutions

- Goal: keep observing the same target (no reference star)
- Method: tune an observing parameter to discriminate between stellar PSF and planet
- Angular differential imaging (ADI)
- Spectral differential imaging (SDI)
- Polarimetric differential imaging (PDI)
- [note: some additional techniques not explained here]

Angular differential imaging

- Use field rotation while keeping telescope fixed
- alt-az telescope, disabling field tracking mode
- Planet moves around onaxis star as a function of time (following the socalled parallactic* angle)
- Diffraction pattern \& quasi-static speckles stay at fixed position

*parallactic angle = the angle between the great circle through a celestial object and the zenith, and the hour circle of the object

Classical ADI algorithm

Pros and cons of ADI

+ Works with any type of planet (no specific feature)
+ Does not require specific hardware
- Does not work well for stars far from zenith (small variation of the parallactic angle)
- Limited inner working angle (planet must move by more than $1 \lambda / D$ in the field for ADI to work)

- Speckle pattern evolves with time

Speckle decorrelation

Spectral differential imaging

- Based on Integral Field Spectrograph (IFS) observations
- provides field image as function of wavelength («image cube »)
- Diffraction and speckle pattern scale as function of wavelength
- speckle pattern moves away from star with increasing wavelength
- Exoplanet position is fixed
- can be distinguished from speckles

SDI in practice

Wide wavelength range \rightarrow see speckles stretching vs λ

Observed (x, λ) slice

Rescaled (x, λ) slice

Pros and cons of SDI

+ Works with any type of planet (no specific feature needed in planet spectrum)
+ No differential aberrations / simultaneous observations
+ End product $=$ spectrum of the planet!
- Detect and characterize planet at the same time
- Speckle pattern not perfectly constant over wavelength
- Limited inner and outer working angles (depend on wavelength range and spectral resolution)

Cross-correlation: an alternative

- Developed first for non-imaging spectroscopy
- Principle: look for specific, planet-related features in spectral domain
- use correlation between template and data to identify the presence of specific absorption lines or bands

- Only partly leverages the spatially-resolved nature of the SDI data set

Cross-correlation: illustration

Polarimetric differential

 imaging- Reflected light from planet is partially polarized
- Typically 10% polarization
- Star produces unpolarized light
- Can be exploited by polarimetric imager

Pros and cons of PDI

+ Speckle subtraction can be very good
+ No limitation in inner or outer working angle
- Small fraction of planet light is polarized \rightarrow low sensitivity
- Works only in reflected light (best in visible range)
- Requires specific, non-standard hardware

