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|. System architectures & statistics

— combining all detection methods —



Discovery spaces
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Figure 1. Approximate masses and orbital semi-major axes of known exoplanets. The color of each point indicates the
detection technique used to discover each planet. Shaded regions indicate the approximate range of parameter space
over which each detection technique is currently sensitive. Colored lines indicate the approximate sensitivity regimes
of future/ongoing exoplanet surveys: the ground-based direct imaging GPI Exoplanet Survey’ (orange line), the GAIA
planet astrometry survey® for planets orbiting a 1 Mg star at 200 pc (upper yellow line) and a 0.4 My M dwarf at 25
pc (lower yellow line), and the WFIRST exoplanet microlensing survey® (solid green line). This data was taken from the
Exoplanet Orbit Database.'® Masses of Kepler planet candidates are roughly estimated from the measured planet radii.
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Size/mass distribution

(only close-in orbits shown here, typically < 0.25 au)
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Fraction of stars with planets (close-in orbits)

Frequency of planets decreases for increasing mass. Possible break at ~2Rearth.
— Super-Earths are abundant in the galaxy! —



Period distribution

Semi-major Axis
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Fffect of stellar mass (1/2)

Giant planets more abundant around massive stars
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Fffect also seen In direct
Imaging surveys
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Effect of stellar mass (2/2

Small planets more abundant around low-mass stars
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Effect of stellar metallicity
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The frequency of exoplanets increases with stellar metallicity
(as expected from core-accretion)



Closer look at metallicity

1021 (3) BN [Fe/H]=-0.8t0-0.2 _
o BN [Fe/H]=-0.2t00.2 |
5 B [Fe/H]=0.2to 0.5
Q
@ |
c
210" E
5 |
W
9
o

100

1-2R ¢ 2-4R o 4-8 R o 8-20R ¢

Radius

Metallicity matters only above Neptune size — not really for small planets



summary

Fffect of star
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led trends
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Structures in M-P space
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Neptunian desert

This area recelives
strong irradiation
from the star, so that
planets may lose
their gaseous
atmosphere as they
evaporate, leaving
just a rocky core.

Desert may also be
(partly?) due to a
different formation

mechanism for
short-period super-
Earths and giant
exoplanets.
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Brown dwart desert
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BD desert in 2014

The desert is slowly filling up...




BDs and planets also look
different in direct imaging surveys
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Brown dwarfs vs planets: an
intrinsic ditfference”?

Probability

e Eccentricity
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Core accretion vs

gravitational
instability

Gravitation instability
can explain more
massive planets
further away, but
requires massive disk

Dynamical evolution
makes It hard to
distinguish between
the two scenarios

Studying very young
systems is key!

Accretion model

Central star

Dust disk
Orbiting dust grains accrete

into "planetesimals” through
nongravitational forces.

Planetesimals grow, moving in
near-coplanar orbits, to form
"planetary embryos.”

Gas-giant planets accrete gas
envelopes before disk gas
disappears.

&) .

Gas-giant planets scatter or

accrete remaining planetesimals

and embryos.

Gas-collapse model

>

A protoplanetary disk of gas
and dust forms around a
young star.

Planet

Gravitational disk instabilities
form a clump of gas that be-
comes a self-gravitating planet.

/Gas giant

Dust grains coagulate and
sediment to the center of the
protoplanet, forming a core.

The planet sweeps out a wide
gap as it continues to feed on
gas in the disk.




. Protoplanetary disks

— an observational perspective —



. Protoplanetary disks
1.1 Theoretical picture



Protoplanetary disks

Disks are the consequence of angular momentum conservation

Gravitational collapse phase > Mass accretion phase

_ o \\\
Molecularcloud core  First core formation Protostarformation Class O-l / Class -1l

outflow

~ 100 AU

subject of
today’s
lecture



Star-forming regions

By ‘chance’, our Sun
IS currently in the
middle of the Local
Bubble

* Nearest star forming
regions at ~140 pc
(Taurus)

* Need to go to Orion
nebula (400 pc) to
See massive star
formation in action




Standard theoretical picture

 Small grains coupled to gas —> gentle collisions
e Grain growth —> settling to mid-plane

* Decoupling from gas —> migration

// Distance in AU

1 10 100



Key structure properties

* Protoplanetary disks mainly characterized by:
* mass, radius, density, temperature
» radial and vertical structure (flaring)

* dynamics: transport mechanisms, magnetic fields, winds, etc

* Properties probed in a variety of ways
* photometry (spectral energy distribution, sub-mm luminosity)
e spectroscopy: dynamics through gas lines

e Imaging: size, morphology & structures

* [hese properties depend on host star, environment, evolution



Spectral energy distribution
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SEDs: first hint on structure
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. Protoplanetary disks
1.2 Imaging techniques



Three main tracers to study
disk structures

o Scattered light: dust suspended in gas upper layers
 Thermal emission: disk solids

* Line emission: gas

Emission lines (e.g., CO) Atmosphere

gas + small dust grains

(Sub-)mm/cm continuum Midplane
(+ optically thin lines; e.g., C'80) gas + larger solids



Morpnhology depends on
chosen tracer

ad Scattered light b Thermal continuum C Spectral line emission

-id 1
"

The TW Hya disk seen with different tracers



Continuum emission

» Optical depth decreases with A, providing direct view
of disk mid-plane in the sub-mm

e sub-mm range is also required to address thermal emission at
low temperatures, far away from the star

» Particle size probed in thermal emission mostly ~ A
* smaller particles do not emit efficiently

* larger particles give less emission per mass, although all sizes
contribute (—> ambiguity)

e Sub-mm appropriate to study grain growth



Continuum observations

* Single-dish observations strongly limited in angular resolution
o [argest antenna (JCMT): 15 m —> resolution > 5 arcsec at 450 pm

e Disks are typically < 1 arcsec (100 au @ 100 pc)

* Interferometry: angular resolution limited by antenna
separation

 ALMA: 64 antennas, baselines up to 16 km —> resolution ~ 20 mas!
* Electric field recorded through local oscillators in each antenna
* |nterferometric signal produced offline by correlation

* |Images reconstructed with specific algorithms



Continuum observations
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Scattered light

o Starlight retlected from disk surfaces is typically faint,
gray or red, and forward scattered

* those properties indicate dust aggregates with amax ~ 10 pm
In disk atmospheres, representing the early steps in the
growth sequence or possibly tracing collision fragments
mixed up from the midplane

e settling induces a vertical stratitication of particle sizes, which

makes the height of the scattering surface decrease with A

e Scattered light is partly polarized, depending on the
size, shape, and composition of grains



Scattered light observations

* Required high-contrast
imaging techniques

* Imaging disks with ADI
IS complicated

e extended source can be
confused with stellar
halo

cADI (reduced par.angle)

* standard ADI processing —
technigues not designed C
to preserve the . ;
morphology of disks




Scattered light observations:
polarimetric ditferential imaging

e Reflected |Ight from dust is our blue sky is polarized!
partially polarized

VN

Unpolatized sunlight linearly

e same phenomenon explains why > / "

our blue sky is partly polarized

Star produces unpolarized light I %

 Can be exploited by polarimetric

imager
M =




Scattering geometry towards observer

90° scattering

dim, strongly polarized
LLLLLLL L L LR
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top side
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mid-plane 0° forward 90° backward 180°

_ | observed phase angle range at i = 75° |
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Views from observer’s perspective
Total intensity view Polarized intensity view Degree of polarization
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major axis of projected disk
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Spectral line emission

* Main gas species (H2) has very little signature (no
dipole moment, inefficient emission)

 Measurements rely on the spectral line emission from
(sub-)mm rotational transitions of rare tracer
molecules

* mainly CO (high optical depth)
* mass can be studied with rarer isotopologues (13CO, C180)

* Mostly done in sub-mm, although mid-IR can also be
used



Spectral line observations

 Reconstruct ALMA images In
individual spectral channels
around a gas line

o Blue/red-shift due to rotation
slightly changes the
wavelength of the emission
ine

« Wavelength shift corresponds
to gas velocity —> can be
used to probe disk dynamics

Offset (arcsec)

Offset (arcsec)



. Protoplanetary disks
1.3 Results from imaging



DISK sizes

« Maximum disk extension (sometimes
>> 100 au) measured In:

e scattered light

* gaslines 00

 Reduced disk sizes generally
measured In:

Ro.o mm (AU, to 0.9L)

e sub-mm (radial drift, reduced brightness, A

optical depth, evolution of solids, ...?) 01 10 10 100
Lo.omm (MmJy at 150 pc)

vl 111
1,000

* polarized scattered light (partial
polarization reduces sensitivity)



Disk shapes: flaring

today: scattered emission
from both sides

early days: silhouette (HST)

DoAr 25




A variety of structures: the ALMA view




A variety of
structures: the
optical
polarization
View
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The crucial role of disk
structures

e Standard model has
monotonically decreasing P(r)
—> negative force —> gas

Trapping of dust particles

haS SuU b-Kep|el’IaI’] mOt|On in pressure maxima
» Migration of solids duetogas ‘| \ =
. . . Yuper-nepierian / 4 \ Sub-Keplenan
SUb-Kep|eI’Iaﬂ mOtIOﬂ, WhICh "'-.,I‘\Velocttv . Velocity
creates « head wind » |

 Non-monotonic pressure
profile can create dust trap,
which promotes growth



Possible origins of
substructures

e Fluid mechanics
e photoevaporation / winds —> cavities
 magneto-hydro dynamic flows & turbulence —> gaps, vortices

e self-gravity —> spiral patterns

 Dynamical interactions with companions
* |ow-mass companions —> gaps, spirals
* massive companions —> cavities, vortices, warps

» Condensation fronts (snow lines) affect density of solid and
gas, and outcome of collisions



Possible shapes
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RINQS - cavities

10 AU 10 AU

Cavities more prominent in sub-mm. Could be due to big grains
being trapped, while gas and small dust still flowing through cavity.



RINQS - gaps

10 AU 10 AU

No direct relationship found so far between the position and number
of gaps in sub-mm and optical observations.



Arcs, spirals

C Arcs

d Spirals

10 AU 10 AU 10 AU 10 AU 10 AU

Sub-mm spirals trace density, while optical spirals are more likely
due to disk scale height variations.



Sub-mm vs optical images

* Multi-wavelength view required to understand disk
structure and constrain mechanisms at play

‘

HD135344B (SPHERE) HD135344B (ALMA) TW Hya (SPHERE) .| TW Hya (ALMA)




Vertical structures:
shadows and warps

Inner disks can project shadows onto outer disks, which
affect its appearance in scattered light. Shadows can
be local, extended, or global.

Spirals, shadow lanes, misaligned inner disk Global»sadow



Shadows
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. Protoplanetary disks
1.4 Protoplanets



Goal: find the planets supposed
to create these structures

Young planets should be bright, inside low-brightness gaps / cavities



Detecting protoplanets

* Young planets still in the process of accreting
material for circumstellar disk

* Image processing complicated by presence of disk
(—> several false positives)

Lbienitati s | (a) NACO/AGPM - HD169142 (b) HD 169142 - Disk H + Source L

A3
>
L 4
o L 4
. 0.4

0.5
021

Arcseconds
o
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Some promising candidates

SPHERE/IRDIS Y band polarimetry (2014)

Keck/NIRC2 L- band imaging (2015 & 2016)

d (AU) d (AU)
150 100 50 0 = 50 100 150 150 100 50 0 = 50 100 150
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MWC 758 — a young star with a protoplanetary disk, and a
companion candidate that could create the spiral arms



Then comes PDS70!

« PDS70 = low-mass young
star in Taurus (~5 Myr)

e First robust detection of a
forming protoplanet:
PDS70b

e | ocated at 22 au, Iinside
the large gap of the
PDS70 disk

PDS 70 seen by SPHERE (2018)

<
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ARA (arcsec)
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ADEC (mas

-100
-200
-300
-400

Accretion signature in Ha

400 MK

300
200
100

Confirmation of PDS70b
using accretion emission
ine (hot hydrogen gas)

Detection of PDS70c, which
was initially missed due to
confusion with the disk
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Orbits constrained

* Already 7 years of 300 -
coverage (incl.
archives)

N
-
o

[N
o
o

* Planets most probably
N 2:1 resonance

Decl. Offset (mas)
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| |
N s
(e} o
o o

—300 -

e Masses constrained to

Z(I)O (I) —2IOO
be below 10 MJUp R.A. Offset (mas)



Spectrum: a
circumplanetary disk”

e Very red, almost featureless spectrum —> planet
photosphere hidden by dust. Is it In the planetary

Flux (1071 W/m~2/um)

atmosphere, accretion column, or CPD?

=== Blackbody
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CPD around PDS70 planets:
ALMA confirmation

 Compact emission colocated with PDS70b & ¢

* About 0.01 MEearth Of dust (in large grains)

Isella al. 2086&&==



Gas dynamics perturbations
due to protoplanets

...................

.............................

Gas scale height

~4 Hill radii

Another potential way of using ALMA, in addition to CPD detection



(Gas meridional flows
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(Gas kinks

Emitting CO in the : .
ntinuum emission .
selected channel continuurm emis Velocity

kink

* Probing disk surface
with 12C0O

 Forming protoplanet

distorts the gas velocity
pattern

* spiral waves launched by
planet

CO upper surface CO lower surface



A Dec ["]

A Dec ["]

A Dec ["]

A Dec ["]

Gas kink: model

1Mjyp model




as KINK: observation

CO lower surface

Adec. (")

Velocity
kink

e

dust rings
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[[|. Debris disks

— the leftovers of planetary formation —
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We all live In a debris disk

e Asteroid and Kuiper belts are our own debris disk
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Debris disks: detection

: Infrared excess detected by IRAS
FlrSt p|aﬂetary SyStem (first IR space telescope)

detected in 1984 L

e A circumstellar disk
around beta Pictoris

" Brad Smﬁw saw this by eye f;,}
2 (usmg the first stellar Coronagraph)

FLUX DENSITY (Jy)
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Debris disk Imaging:
optical and sub-mm

B Pictoris

Several images in \
the 2000’s with f
HST and sub-mm \

antennas

Now also studied
with ground-based

HCI ‘

€ Eridani i Fomalhaut



The Hubble GO/12228 Program Debris Disk Sample

HD 181327 (F6V) AU MIC (M1V) HD 15745 (F2V)
<
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HD 15115 (F2)
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HD 181327 HD 15115

HD 15745

Disk luminosity

slowly
decreasing with .
time as o e HD 107146
planetesimals T ' |
are ground down e - S
to dust, and | R N
radiation F T | IR
pressure expels 210
small grains.
Nevertheless, B
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resolved at all ;
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Many traces of planets
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Dynamical interactions

The trapping of comets in Vega's disk into planetary resonances
causes them to be most densely concentrated in a few clumps

Time: 0.0 Myr




Planet-disk Interactions

Surface brightness (relative to spine of disk)

beta Pic b orbit consistent
with production of warp

... but what caused beta Pic
b to move out of the main
disk plane in the first place?

2019: RV data suggest
presence of 9 Myyp planet
orbiting at 2.7 au

Projected vertical distance (AU)

2020: confirmed with direct
detection (interferometry)

Projected horizontal distance (AU)

Golimowski et al. 2006



Conclusions

» Detection of exoplanets has profoundly changed our
understanding of planet formation

 Most of the ingredients leading from molecular core
collapse to planet formation have been identified

e many details still remain open / unsolved, including the
connection between disk structures and forming planets

* Directly imaging planet tormation in young systems at
optical and sub-mm wavelengths is key to obtain a
consistent picture, and connect all the dots

e soon: boost in angular resolution with extremely large telescopes!



