Introduction to exoplanetology

Michaël Gillon (michael.gillon@uliege.be)
 Olivier Absil (olivier.absil@uliege.be)

Introduction to exoplanetology. III. Indirect methods for exoplanet detections

Offset in Right Ascension (mas)

Michaël Gillon

michael.gillon@uliege.be

The radial velocity method

Radial motion of a star for an inertial observer (cf. L2)

$$
\begin{aligned}
& K=\frac{28.4329 m / s}{\sqrt{1-e^{2}}} \frac{m_{p} \sin i}{M_{J u p}}\left(\frac{m_{p}+m_{*}}{M_{S u n}}\right)^{-2 / 3}\left(\frac{P}{1 y r}\right)^{-1 / 3} \\
& K=\frac{28.4329 m / s}{\sqrt{1-e^{2}}} \frac{m_{p} \sin i}{M_{J u p}}\left(\frac{m_{p}+m_{*}}{M_{S u n}}\right)^{-1 / 2}\left(\frac{a}{1 a u}\right)^{-1 / 2}
\end{aligned}
$$

The radial velocity method

What if $\mathrm{N}>1$ planets?

$$
V_{r}=\gamma_{r}+\sum_{i=1}^{N} K_{i}\left(\cos \left(\omega_{i}+f_{i}\right)+e \cos \omega_{i}\right)
$$

IF planet-planet interactions are negligible (i.e. far from orbital resonance)

Several planets
Complex systems: modeling includes planet-planet interactions and tidal effects Criterion of dynamical stability helps constraining the solution

The radial velocity method

Current best precision $\sim \mathbf{2 5 c m} / \mathrm{s}=1 \mathrm{~km} / \mathrm{h}$

The radial velocity method

1952

Proposal for a project of high-precision stellar radial velocity work

The Observatory, Vol. 72, p. 199-200 (1952)
We know that steitar compantons can exist at very senabl distances. It is mot uneasonable that a panet might exist at a distance of migo astronomical mit, or abone $3,000,000 \mathrm{~km}$. Its period around a star of solar mass would then be about I day,

Precision at that time $\sim 750 \mathrm{~m} / \mathrm{s}$

1995

$$
a=0.053 \mathrm{au}
$$

$$
\text { Msini }=0.5 \mathrm{M}_{\text {Jup }}
$$

Didier Queloz \& Michel Mayor

$$
P=4.2 \text { days }
$$

The radial velocity method

The Doppler effect

$$
\begin{aligned}
& \lambda=\lambda^{\prime} \sqrt{\frac{1+\beta}{1-\beta}} \\
& \beta=v / c
\end{aligned}
$$

-> high-resolution spectroscopy (visible or near-infrared)
-> measurement of the radial velocity by comparing the observed spectrum to a reference, e.g.

* a standard star' spectrum
* a synthetic spectrum
* a spectrum of the target
-> For stars that are poor in well-defined lines (hot and/or fast rotating stars), the radial velocity can be measured by fitting a profile on one or a few strong lines.
$->$ The coldest stars are very rich in lines (molecular bands), resulting in no net continuum
Best targets: metal-rich, slowly rotating stars of type F5 to M5

The radial velocity method

RV error with a single line:

$$
\sigma_{R V} \sim \frac{\sqrt{F W H M}}{C \times S N R}
$$

with FWHM the full-width at half maximum, SNR the signal-to-noise ratio in the continuum, and C the contrast of the line

Small FWHM: high resolution + slow rotation
High C: strong (but unsatured) lines
High SNR: telescope size, instrumental performances

RV precision for a spectrum:
(Bouchy et al. 2001)

$$
\sigma_{R V}=c\left(\sum_{i} \frac{\lambda_{i}^{2}\left|d A_{i} / d \lambda\right|^{2}}{A_{i}+\sigma_{D}^{2}}\right)^{-1 / 2}
$$

$i=$ pixel $i ; \lambda_{\mathrm{i}}=$ wavelength; σ_{D} is the read-out noise (in electrons);
$\mathrm{A}_{\mathrm{i}}=$ flux in electrons; $c=$ speed of light
Formula valid only for sufficiently strong lines and high SNRs, and neglecting stellar and instrumental systematic noises

The radial velocity method

Stellar noises

The radial velocity method

Stellar noises

Oscillations (p-modes) : star having a convective envelope. Period of a few minutes, increases if stellar density decreases. Amplitude of a few m/s for each mode.
Solution: averaging with exposures of at least 15 min .

The radial velocity method

Stellar noises

Oscillations (p-modes) : star having a convective envelope. Period of a few minutes, increases if stellar density decreases. Amplitude of a few m/s for each mode.
Solution: averaging with exposures of at least 15 min .

Granulation: stars with convective envelope. Amplitude integrated on the stellar disk of the order of m / s. Characteristic timescale $\sim 10 \mathrm{~min}$, or more (meso and super-granulation).
Solution: several exposures per night.

The radial velocity method

Stellar noises

Oscillations (p-modes) : star having a convective envelope. Period of a few minutes, increases if stellar density decreases. Amplitude of a few m / s for each mode.
Solution: averaging with exposures of at least 15 min .

Granulation: stars with convective envelope. Amplitude integrated on the stellar disk of the order of m / s. Characteristic timescale $\sim 10 \mathrm{~min}$, or more (meso and super-granulation).
Solution: several exposures per night.

Magnetic activity: rotating spots on the photosphere. Amplitude decreases and period increases with age. Amplitude can exceed $100 \mathrm{~m} / \mathrm{s}$ for a young star.
Solution: targeting old stars- observing in the IR - modeling the effect of spots using activity indicators, simultaneous time-series photometry, and/or a priori knowledge of the rotation of the star - strategy adapted to the star to average at best the effects of the activity

The radial velocity method

Stellar noises

Oscillations (p-modes) : star having a convective envelope. Period of a few minutes, increases if stellar density decreases. Amplitude of a few m / s for each mode.
Solution: averaging with exposures of at least 15 min .

Granulation: stars with convective envelope. Amplitude integrated on the stellar disk of the order of m / s. Characteristic timescale $\sim 10 \mathrm{~min}$, or more (meso and super-granulation).
Solution: several exposures per night.

Magnetic activity: rotating spots on the photosphere. Amplitude decreases and period increases with age. Amplitude can exceed $100 \mathrm{~m} / \mathrm{s}$ for a young star.
Solution: targeting old stars- observing in the IR - modeling the effect of spots using activity indicators, simultaneous time-series photometry, and/or a priori knowledge of the rotation of the star - strategy adapted to the star to average at best the effects of the activity

Magnetic cycles: 11 years for the Sun. Not only the RV precision varies with the magnetic phase, but possibly the RV itself too.
Solution: targeting old stars?
« Ultimate " precision ~10 cm/s ?

The radial velocity method

$1 \mathrm{~m} / \mathrm{s} \sim 10^{-5} \AA \sim 1 / 1000^{\text {th }}$ of a pixel for a high-resolution spectrograph
\rightarrow Temperature and pressure in the spectrograph must be regulated very precisely. $1 \mathrm{~m} / \mathrm{s}=0.01 \mathrm{~K}=0.01 \mathrm{mbar}$
\rightarrow Mechanical stability: flexures can lead to RV drifts $>10 \mathrm{~m} / \mathrm{s}$
\rightarrow Stability of the illumination of the spectrograph' slit: internal calibration or use of optical fibers that minimize the illumination effects
\rightarrow Homogeneity and electronical performances of the detector: ultra-high quality + very thorough calibration are required
\rightarrow Minimizing contamination by the light of the Moon
\rightarrow Avoiding the spectral areas rich in telluric lines (especially in the red and IR) that can be variable
\rightarrow Wavelength calibration: lodine cell, Thorium-Argon lamp, laser comb, Fabry-Perot

The radial velocity method

Calibration in λ : the lodine cell technique

I_{2} cell upstream of the spectrograph' slit \rightarrow forest of lines between 5000 and $6200 \AA$

RV measurement by full modeling of the combined star $+I_{2}$ spectrum. Calibration in λ and RV measurement in the same step

The radial velocity method

Calibration in λ : the simultaneous Thorium-Argon technique

Thr-Ar lamp sends light to the telescope focus, and it is then transmitted to the spectrograph through a different fiber than the scientific one.

The spectrum is calibrated in wavelength, then the RV is measured by crosscorrelation

The radial velocity method

Calibration in λ : the Laser Frequency Comb technique

Laser whose spectrum is a « comb » of lines regularly spaced within a range of λ. The laser's periodic modulations are set by an atomic clock to reach the highest accuracy on the frequencies. In RV, accuracies $<1 \mathrm{~cm} / \mathrm{s}$ can be achieved. Current problems: lines are too close (Fabry-Perrot), λ-range too small.

Wilken et al. 2010

The spectrum is calibrated in wavelength, then the RV is measured by crosscorrelation

The radial velocity method

The cross-correlation function $=$ CCF

$$
(s * t)(\delta)=\int_{-\infty}^{+\infty} s(\lambda) t(\lambda+\delta) d \lambda
$$

Correlation of the spectrum with a standard, and measurement of the radial velocity by fitting a Gaussian profile on the obtained CCF

The radial velocity method

The CCF bisector as a mean to identify «false planets»

Comparing the average velocity in the ranges $10-40 \%$ et $55-90 \%$ of the maximum contrast

The radial velocity method: the state-of-the-art

Up to 4x8.m telescopes at ESO Paranal, Chile
Echelle spectrograph
R up to 190,000
380-788nm
Thorium-Argon + Laser-Comb
Extreme instrumental stability
RV stability $<10 \mathrm{~cm} / \mathrm{s}$

The radial velocity method: the state-of-the-art

Radial velocities: results

1988 : first exoplanet: γ Cep b (Campbell et al.), confirmed only in 2002
1989 : first brown dwarf (or exoplanet?): HD114762b (Latham et al.)
1995: first confirmed exoplanet around a main-sequence star: 51 Peg b (Mayor \& Queloz)
Discovery of hot Jupiters
1997: first multiple exoplanetary system: Upsilon Andromedae (Butler et al.)
2000: HD209458b, first transiting planet (Mazeh et al., Charbonneau et al.)

2004: first « Neptune » and « Super-Earth » (Butler et al., Mc Arthur et al.)
2006: first multiple Neptunes system (Lovis et al.)
2007: first super-Earth in the habitable zone, first multiple super-Earths system (Udry et al.)

Radial velocities: results

nature
 the international weekly journal of science

NEAR HORIZON

Proxima Centauri, closest star to the Sun pages 408 \& 437

The Proxima Centauri System

Radial velocities: results

Proxima Centauri d - $\mathrm{K}=39+-7 \mathrm{~cm} / \mathrm{s}-\mathrm{Msini}=0.26+-0.5$ Mearth

Radial velocities: results

>900 planets

Year of Discovery (year)

Radial velocities: results

>900 planets

Radial velocities: results

Eccentricity - Period Distribution
25 Feb 2022
exoplanetarchive.ipac.caltech.edu

Radial velocities: results

Giant planets in orbits shorter than Jupiter's: eccentric and warm/hot Jupiters A few \% of solar-type stars

Eccentric warm Jupiters: planet-planet scattering and/or Kozai resonance followed by tidal migration?

Radial velocities: results

Systems of short-period giant planets in or close to orbital resonances

55 Cnc e: $8 \mathrm{M}_{\text {Earth }}, \mathrm{P}=19 \mathrm{~h}$ 55 Cnc b: $0.8 \mathrm{M}_{\mathrm{J}}, \mathrm{P}=15$ days 55 Cnc c: $0.2 M_{J}, P=45$ days 55 Cnc f: $0.15 \mathrm{M}_{\mathrm{J}}, \mathrm{P}=260$ days

> Proofs of disk-driven migration?

Radial velocities: results

The frequency of giant planets increases with the metallicity of hot stars

Radial velocities: results

The frequency of planets decreases for bigger masses

Radial velocities: results

HD10180

Solar-type star
7 planets

- HD10180b, $\geq 1.4 \mathrm{M}_{\text {Earth }}, \mathrm{P}=1.2$ days
- HD10180c, $\geq 0.75 \mathrm{M}_{\text {Neptune }}, P=5.8$ days
- HD10180d, $\geq 0.7 M_{\text {Neptune }}, P=16$ days
- HD10180e, $\geq 1.5 \mathrm{M}_{\text {Neptune }}, \mathrm{P}=50$ days
- HD10180f, $\geq 1.4 \mathrm{M}_{\text {Neptune }}, \mathrm{P}=123$ days
- $\mathrm{HD} 10180 \mathrm{~g}, \geq 1.2 \mathrm{M}_{\text {Neptune }}, \mathrm{P}=1.6$ years
- HD10180h, $\geq 0.7 \mathrm{M}_{\text {Saturne }}, \mathrm{P}=6$ years

> | Multiplanetary system with |
| :---: |
| short-period super-Earths |
| and Neptunes |

Radial velocities: results

$P<100$ days
Population distinct of hot Jupiters

$30-50 \%$ of solar-type
stars have one or
several planets of a
few $\mathrm{M}_{\text {Earth }}$ in short-
period orbits
(Mercury's or shorter)

No metallicity effect
$>70 \%=$ multiple systems

Radial velocities: results

Jupiter-Analog Upper Limits from the AAPS Sample

Velocity Amplitude $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	Upper Limit percent $\mathrm{e}=0.1$		
$K>50$	11.6 ± 1.1	12.3 ± 1.4	14.6 ± 1.5
$K>40$	12.6 ± 1.1	13.6 ± 1.4	16.2 ± 1.5
$K>30$	14.4 ± 1.2	15.4 ± 1.4	18.6 ± 1.5
$K>20$	18.6 ± 1.1	20.7 ± 1.5	23.8 ± 1.6
$K>10$	37.2 ± 1.1	44.8 ± 1.4	48.8 ± 1.5
Wittenmeyer et al. (2011)			

> Jupiter analog:
> Now estimated to be less than 5% of solar-type stars!
> Rowan et al. (2016)

Radial velocities: the future

ESPRESSO@VLT: 1 to 4 telescopes of 8.2 m
precision $\sim 10 \mathrm{~cm} /$ s for bright solar-type stars
HIRES@E-ELT: telescope of 39m
precision of $2 \mathrm{~cm} / \mathrm{s}$ for bright solar-type stars

Radial velocities: the future

IR spectrographs to search for small planets around ultra-cool stars, e.g.
Carmenes @ Calar Alto, 3.5 m telescope

$$
\text { precision of } 1 \mathrm{~m} / \mathrm{s} \text { for } \sim 300 \text { ultra-cool stars (}>\mathrm{M} 4 \text {) }
$$

SPIROU @ CFHT 3.6m telescope precision of $1 \mathrm{~m} / \mathrm{s}$ for ultra-cool stars

Habitable Zone planet Finder (HPF) @ Hobby-Eberly 10m telescope precision $<1 \mathrm{~m} / \mathrm{s}$ for ultra-cool stars

Etc...

The astrometric method

Motion of the star in the plane of the sky (circular orbit)

$\theta=\frac{a}{d} \frac{m_{p}}{m_{*}}=\left(\frac{G}{4 \pi^{2}}\right)^{1 / 3} \frac{m_{p}}{m_{*}^{2 / 3}} \frac{P^{2 / 3}}{d}$
$\theta=5 m a s \frac{m_{p}}{M_{J}}\left(\frac{m_{*}}{M_{\text {sun }}}\right)^{-2 / 3}\left(\frac{P}{11.8 y r}\right)^{2 / 3}\left(\frac{d}{p c}\right)^{-1}$
$\theta=3 \mu a s \frac{m_{p}}{M_{\oplus}}\left(\frac{m_{*}}{M_{\text {sun }}}\right)^{-2 / 3}\left(\frac{P}{1 y r}\right)^{2 / 3}\left(\frac{d}{p c}\right)^{-1}$

The astrometric method: results

1855: first exoplanet detected around the binary star 70 Ophiuchu (Jacobs)
1943: detection of massive exoplanets (Strand; Reyl \& Holmberg)
1963: detection of an exoplanet of $1.6 \mathrm{M}_{\mathrm{J}}$ around Barnard's star, the second closest stellar system (van de Kamp)

Years 1960-1980: otrer planets (and brown dwarfs) detected, notably by Peter van de Kamp

All these detections have been ruled out and imputed to systematic effects

Typical precision for modern CCD imagery ~ 1-10 mas

Decrease in $1 / d$

Favors long-period massive planets

The astrometric method

Ground-based CCD imagery

Main source of error = atmospheric turbulence
Solution = differential astrometry in a small field (a few arcmins) with a large aperture telescope. Needs many reference stars nearby.

$\sigma=0.1$ mas for a 10 min exposure with a 10 m telescope

The astrometric method: results

Astrometric orbit of a low-mass companion to an ultracool dwarf^

J. Sahlmann ${ }^{1}$, P. F. Lazorenko ${ }^{2}$, D. Ségransan ${ }^{1}$, E. L. Martín ${ }^{3}$, D. Queloz ${ }^{1}$, M. Mayor ${ }^{1}$, and S. Udry ${ }^{1}$

Astronomy and Astrophysics, 556, 133 (2013)

$$
\begin{aligned}
& P=245 \text { days } \\
& e=0.35 \\
& a=0.36 \text { au } \\
& M_{1}=78.4+-7.8 M_{\text {Jup }} \\
& M_{2}=28.5+-1.9 M_{\text {Jup }}
\end{aligned}
$$

A pair of brown dwarfs at 20 parsec
Promising approach for nearby very-low-mass stars and brown dwarfs

The astrometric method

Ground-based interferometry

For two stars at $>0.5^{\circ}$, the differential astrometric precision with CCD groundbased astrometry does not depend any more of the size of the telescope and is fully given by the atmospheric turbulence.

Solution for" distant» stars: Long-base interferometry. The size of the virtual telescope is larger than the separation of the light rays at the top of the atmosphere ($\sim 100 \mathrm{~m}$)
Expected precision: down to 0.01 mas (ex. VLT/PRIMA)

The astrometric method

Ground-based interferometry: very difficult

The astrometric method: results

Space: follow-up of exoplanets detected by RVs

HST Fine Guidance Sensors (interferometry) :

- GI 876 b (5 pc) : P=60d, Msini~2 $M_{\text {jup }} \rightarrow M_{p}=2.6 M_{\text {Jup }}$ (Benedict et al. 2002; Bean \& Seifarth 2009)
- ε Eri b (3 pc) : $\mathrm{P}=2500 \mathrm{~d}$, Msini~1.2M $\mathrm{Jup} \rightarrow \mathrm{M}_{\mathrm{p}}=1.6 \mathrm{M}_{\text {Jup }}$ (Benedict et al. 2006)
- HD 33636 b (29 pc) : $\mathrm{P}=2130 \mathrm{~d}$, Msini~9 $\mathrm{M}_{\text {Jup }} \rightarrow \mathrm{M}_{2}=0.14 \mathrm{M}_{\text {Sun (Bean et al. 2007) }}$
- u And c and d (14 pc) : $\mathrm{M}_{\mathrm{c}} \operatorname{sini}=2 \mathrm{M}_{\mathrm{jup}}, \mathrm{P}_{\mathrm{c}}=241 \mathrm{j}+\mathrm{M}_{\mathrm{d}} \operatorname{sini}=4.3 \mathrm{M}_{\mathrm{jup}}, \mathrm{P}_{\mathrm{d}}=1282 \rightarrow$ $M_{c}=14 M_{\text {jup }}, M_{d}=10 M_{\text {jup, }} i_{\text {mut }}=30^{\circ}$ (Mac Arthur et al. 2010)

+ a few upper limit on M_{2} from Hipparcos data

The astrometric method: results

Space: follow-up of exoplanets detected by RVs

Hubble finds that orbit of Jupiter-like planet at Epsilon Eridani is at same tilt as the star's circumstellar disk

The astrometric method: the future

The ESA Gaia mission

ESA mission
Launched on Dec 19 ${ }^{\text {th }} 2013$
2 telescopes of 1.45 m aperture 1 third telescope for spectroscopy Orbit: Earth-Sun L2 point Photometry + astrometry + RV for 10^{6} stars
Maximum magnitude ~ 20 (or less ?) For each star: ~ 70 measurements over 5 years
Expected astrometric precisions:
20 as @ mag 15
 200 uas @ mag 20 (?)

Expected harvest: ~1000 long-period massive planets Strong constraints on the frequency of Jupiter analogs

The timings method

Principle: delay or advance of a periodic signal due to the orbital motion of the source and the finite speed of light (light travel time)

Targets = source with a very stable periodic signal:
pulsars
pulsating stars
eclipsing binaries

Amplitude :

$$
\Delta t=\frac{1}{c} \frac{a \times M_{p} \sin i}{M_{*}} \quad \begin{aligned}
& \text { Earth }+ \text { Sun }=1.5 \mathrm{~ms} \\
& \text { Jupiter }+ \text { Sun }=2.5 \mathrm{~s}
\end{aligned}
$$

The timings method: pulsars

Pulsar: neutron star in fast rotation and with its dipolar magnetic axis inclined with respect to its rotation axis. Radio emission beam in the direction of the magnetic axis sweeps Earth once per rotation ~1700 known pulsars

Two classes of pulsars: «regular » with P~1s, and millisecond (~10\%). Millisecond pulsars: hyper-stables, and precision on the period down to $\mu \mathrm{s}$ Precision high enoug to detect a big asteroid!

The timing method: pulsars

Pulsar PSR B1257+12: d~300pc, P~6.2ms, M*~1.35M Sun 1990 : Arecibo radiotelescope shows periodicity departures
1992 : announcement of 2 planets of a few $\mathrm{M}_{\text {Earth }}$ (Wolszczan \& Frail)
1994 : $3^{\text {rd }}$ planet with $\mathrm{M}_{\mathrm{p}}<2 \mathrm{M}_{\text {Moon }}$ (Wolszczan)
PSR B1257+12, Arecibo, 430 MHz

	A	B	C
$M\left(M_{E}\right)$	0.020	4.3	3.9
$\mathrm{P}(\mathrm{d})$	25.3	66.5	98.2
$\mathrm{a}(\mathrm{AU})$	0.19	0.36	0.46

The timing method: pulsars

Pulsar PSR B1620-26: d~380pc, in the globular cluster M4. Binary system with a pulsar ($\sim 1.35 \mathrm{M}_{\text {sun }}, \mathrm{P} \sim 11 \mathrm{~ms}$) + white dwarf ($0.3 \mathrm{M}_{\text {sun }}$), with $\mathrm{P}=191 \mathrm{~d}$.

1993 (confirmed in 2003) : discovery of a circumbinary planet of $2.5 \mathrm{M}_{\mathrm{jup}}$ (Thorsett et al.) $\mathrm{a} \sim 23 \mathrm{au}, \mathrm{P} \sim 100 \mathrm{yrs}$. Age: up to 13 Gyrs

Jovian planet in Globular Cluster M4: Calm bystander in stellar drama

The timing method: pulsations

Two type of very stable pulsators:

1/ White dwarfs of classes GW Vir, DBV, DAV. g-type pulsations, related to the partial ionization of C / O, He et $\mathrm{H} . \mathrm{P}=100-1000$ s

2/ Sub-dwarf stars of type sdB = red giant having lost its hydrogen envelop. p-type pulsations, with P of a few 100s.

$\mathrm{M}>2.4 \mathrm{MJup}, \mathrm{a}=2.8 \mathrm{au}, \mathrm{P}=5.7 \mathrm{yr}$

$\mathrm{M}>3.2 \mathrm{MJup}, \mathrm{a}=1.7 \mathrm{au}, \mathrm{P}=3.2 \mathrm{yr}$

The gravitational microlensing method

Principle : general relativity predicts that light rays are deflected by matter/energy. The light of a distant source grazing a lens (e.g. star, planet) can be deflected towards Earth. The source appears then brighter.

The gravitational microlensing method

Macrolensing: the different images of the source can be observed as point sources or arcs.

The gravitational microlensing method

Microlensing: the different images of the source are not resolved. The most significant effect is photometric.

- Required alignement ~ 1 mas $->$ very rare. Detection of stellar microlensing makes necessary to observe very dense stellar fields.
- Typical source: 1 star of the galactic bulge at $\sim 8 \mathrm{kpc}$
- Typical lens: 1 star of the galactic disk $\sim 4 \mathrm{kpc}$
- Typical duration: determined by the relative motion of the two stars. Typically a few weeks to a few months.

The gravitational microlensing method

$$
\alpha_{G R}=\frac{4 G M_{L}}{c^{2} b}=\frac{2 R_{S c, L}}{b} \quad \text { with } b \gg R_{S c, L}
$$

$$
\frac{\theta_{S} D_{S}}{b=\theta_{I}}=\underline{\theta_{L} D_{S}}-\underline{\alpha_{G R} D_{L S}} \longrightarrow \theta_{s}=\theta_{I}-\frac{2 R_{S c, L}}{b} \frac{D_{L S}}{D_{S}}=\theta_{I}-2 R_{S c, L} \frac{D_{L S}}{D_{S} D_{L}} \frac{1}{\theta_{I}}
$$

Lens equation

The gravitational microlensing method

$$
\theta_{s}=\theta_{I}-\frac{2 R_{S c, L}}{b} \frac{D_{L S}}{D_{L}}=\theta_{I}-2 R_{S c, L} \frac{D_{L S}}{D_{S} D_{L}} \frac{1}{\theta_{I}}
$$

Let's define the Einstein radius : $\theta_{E}=\sqrt{2 R_{S c, L} \frac{D_{L S}}{D_{S} D_{L}}}=\begin{aligned} & \text { limit angle for high } \\ & \text { magnification }\end{aligned}$

Lens equation becomes $\theta_{I}^{2}-\theta_{S} \theta_{I}-\theta_{E}^{2}=0$

2 solutions : $\theta_{+,-}=\frac{1}{2}\left(\theta_{S} \pm \sqrt{\theta_{S}^{2}+4 \theta_{E}^{2}}\right)$

If perfect alignement $\left(\theta_{S}=0\right)$ images make an Einstein ring of radius θ_{E}
distorted images I_{+}

The gravitational microlensing method

In numbers...

$$
\begin{aligned}
& \theta_{E} \approx 0.4\left(\frac{M_{L}}{0.3 M_{\text {Sun }}}\right)^{1 / 2}\left(\frac{D_{L}}{2 k p c}\right)^{-1 / 2}\left(\frac{D_{L S}}{D_{S}}\right)^{1 / 2} m a s, \\
& R_{E}=\theta_{E} D_{L} \approx 2.2\left(\frac{M_{L}}{0.3 M_{S u n}}\right)^{1 / 2}\left(\frac{D_{L}}{2 k p c}\right)^{1 / 2}\left(\frac{D_{L S}}{D_{S}}\right)^{1 / 2} a u
\end{aligned}
$$

For a typical stellar lens, the Einstein ring corresponds to the size of a planetary system

Amplification A? $A=\frac{u^{2}+2}{u \sqrt{u^{2}+4}}, u \equiv \frac{\theta_{S}}{\theta_{E}}$

$$
\begin{array}{ll}
A \approx \frac{\theta_{E}}{\theta_{S}} & \text { if } \theta_{\mathrm{S}} \ll \theta_{\mathrm{E}} \\
A \approx 1 & \text { if } \theta_{\mathrm{S}} \gg \theta_{\mathrm{E}}
\end{array}
$$

Maximum recorded: $\mathrm{A}=3000$ (delta mag = 8.7)

The gravitational microlensing method

Duration $=$ Einstein time t_{E}

$$
t_{E}=\frac{R_{E}}{v_{\perp}} \approx 21\left(\frac{M_{L}}{0.3 M_{S u n}}\right)^{1 / 2}\left(\frac{D_{L}}{2 k p c}\right)^{1 / 2}\left(\frac{D_{L S}}{D_{S}}\right)^{1 / 2}\left(\frac{v_{\perp}}{200 k m s^{-1}}\right)^{-1} \text { days, }
$$

If the lens is not visible, a priori probability distributions for its transversal velocity and distance must generally be taken from a galactic model.
Another option is based on finite source effects, that constrain the ratio R_{E} / R_{s}, and the microlens parallax that constrains the distance to the lens

In angular units

$$
t_{E}=\frac{\theta_{E}}{\mu_{L S}} \longrightarrow \text { Relative proper motion }
$$

The gravitational microlensing method

Microlens parallax

+ finite source effects (high amplification): distance and mass of the invisible lens

The gravitational microlensing method

Star + planet?

3 important parameters: $q=M_{p} / M_{*}, a\left(R_{E}\right)$, angle source-binary a
Additional structures of relative duration $\approx q^{0.5}$
Each amplification maximum corresponds in the lens plane to a minimal distance between the source and a caustic $\boldsymbol{=}$ maximal amplification zone
$\mathrm{q}=0.01, \mathrm{a}=1.5$

$$
\mathrm{q}=0.01, \mathrm{a}=1
$$

$\mathrm{q}=0.01, \mathrm{a}=0.8$

Erl \& Schneider, $\$ 993$

The gravitational microlensing method

Anomalies last days for giant planets, hours for terrestrial planets If the source's path crosses a caustic, the amplification can be high even for terrestrial planets

The gravitational microlensing method

Mao \& Paczynski 1991

The gravitational microlensing method

The advantages of the method

- Detection of planets around stars very far away: other area of the Galaxy explored
- Detection of free-floating planets
- Detection of multi-planetary systems
- Sensitive to planets at a few au of their stars, or less (red dwarfs)
- Sensitive to terrestrial planets (if high amplification)
- Permits to determine the mass of the lens and of the planet
- Insensitive to the activity of the host star
- Could in theory detect planets in M31

The drawbacks of the method

- Unique detection, no further possibility of confirmation and follow-up
- Distance of the system can behard to constrain if host star is not visible
- Complex modelling and models degeneracy
- No information on the structure and atmospheric properties of the planet

The gravitational microlensing method

Detections Per Year
exoplanetarchive.ipac.caltech.edu

The gravitational microlensing method

Key discoveries

2005 : first planet detected by μ lensing (Bond et al.)
OGLE-2003-BLG-235Lb - 5.8kpc - a~4.3 au - $\mathrm{M}_{1} \sim 0.6 \mathrm{M}_{\text {Sun }}-\mathrm{M}_{2} \sim 2.6 \mathrm{M}_{\text {jup }}$
2006 : first ‘super-Earth' detected by μ lensing (Beaulieu et al.)
OGLE-2005-BLG-390Lb - 6.6kpc - a~2.6 au - $\mathrm{M}_{1} \sim 0.22 \mathrm{M}_{\text {Sun }}-\mathrm{M}_{2} \sim 5.5 \mathrm{M}_{\text {Earth }}$
2008 : First multiple system detected by μ lensing (Gaudi et al.)

$$
\begin{array}{ccc}
\text { OGLE-2005-BLG-109Lb-1.5kpc - a~2.3 au }-\mathrm{M}_{1} \sim 0.5 \mathrm{M}_{\text {Sun }-\mathrm{M}_{2} \sim 0.7} \mathrm{M}_{\text {Jup }} \\
\text { OGLE-2005-BLG-109Lc } & \mathrm{a} \sim 4.6 \mathrm{au} & \mathrm{M}_{2} \sim 0.3 \mathrm{M}_{\text {jup }}
\end{array}
$$

2009 : first planet around an ultra-cool dwarf (Bennett et al.)
OGLE-2005-BLG-192Lb - 0.66kpc - $\mathrm{a} \sim 0.65 \mathrm{au}-\mathrm{M}_{1} \sim 0.085 \mathrm{M}_{\text {Sun }}-\mathrm{M}_{2} \sim 3.2 \mathrm{M}_{\text {Earth }}$
2011: First free-floating planets (Sumi et al.)
2013 : two compact binary low-mass brown dwarfs (Choi et al.)
OGLE-2009-BLG-151L-0.4kpc - $\mathrm{a} \sim 0.3 \mathrm{au}-\mathrm{M}_{1} \sim 19 \mathrm{M}_{\text {Jup }}-\mathrm{M}_{2} \sim 8 \mathrm{M}_{\text {Jup }}$
OGLE-2011-BLG-0420L - 2kpc - a~0.2 au - $\mathrm{M}_{1} \sim 26 \mathrm{M}_{\text {Jup }}-\mathrm{M}_{2} \sim 10 \mathrm{M}_{\text {Jup }}$
« planet» around a brown dwarf (Han et al.)
OGLE-2012-BLG-0358Lb - $1.8 \mathrm{kpc}-\mathrm{a} \sim 0.9 \mathrm{au}-\mathrm{M}_{1} \sim 23 \mathrm{M}_{\text {Jup }}-\mathrm{M}_{2} \sim 2 \mathrm{M}_{\text {Jup }}$
2015 : First microlensing parallax measured at 2.5\% precision (Udalski et al.)

The gravitational microlensing method

Important statistical results

1. Beyond the ice line, Neptunes and Super-Earths are ~ 7 times more frequent than Jupiters (Sumi et al. 2010)
2. Less than 20% of solar-type stars host a planetary system similar to ours (Gould et al. 2010)
3. There should be \sim twice more free-floating planets than main-sequence stars in the Milky Way(Sumi et al. 2011)
4. $17_{-9}^{+6} \%$ of stars have a Jupiter between 0.5 and 10 au (Cassan et al. 2012)
$52_{-29}^{+22} \%$
$62_{-37}^{+35 \%}$
Neptune
Super-Earth

In average, each star of the Galaxy hosts at least one planet $>5 \mathrm{M}_{\text {Earth }}$ between 0.5 and 10 au.

The gravitational microlensing method

In practice

1/ Detection of lensing anomalies by ground-based surveys OGLE (Chile) et MOA (New Zealand)

MOA 1.8m

2/ Follow-up of anomalies by the multi-longitude networks PLANET/RoboNET, MicroFUN and MiNDSTEp

MicroFUN

Microlensing Follow-Up Network

The gravitational microlensing method

The future: space

NASA
Nancy Grace Roman SpaceTelescope
Telescope of 2.4 m - IR - 5 yrs
Earth-Sun L2 orbit
Launch in 2027
Expected harvest for NGRST
(Spergel et al. 2013) :

- 3000 planets
- 300 Earths - 40 Mars
- a few dozens of free-floating Earths

ESA
Telescope of 1.2 m - Vis + IR - 6 yrs
Earth-Sun L2 orbit
Launch in 2023
Expected harvest for Euclid:
(Penny et al. 2013)

- Several hundreds of planets
- 50 Earths - 5 Mars
- a few free-floating Earths

References

M. Perryman

Cambridge University Press
Chapitres 2, 3, 4, 5

