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Change of variables : 

Vector of position of the
center of mass

Vector of position of the
Planet relative to the star

Center of mass is in uniform motion 

Equation of motion for the 
planet relative to the star

= equation of relative motion of a test particle in orbit around a mass M

Are assumed a star of mass m* and a planet of mass mp. Their equations of 
motion in a random inertial reference system are: 
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Motion in a plane

Orbital angular 
momentum 
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Representation in polar coordinates (r, ψ) system 

: multiplication by r and integration
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Orbital angular momentum



Assuming polar coordinates r and ψ
r = star – planet distance 
u=1/r, et ψ replaces t through

Non-homogeneous, 
second-order, linear 
differential equation

General solution: 

reference angleamplitude

p = h2/GM = semi-latus rectum
e ≥ 0 = eccentricity
Equation of a conic section in polar 
coordinates

We go back to r(ψ) : 
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phase term



1 = parabola : e = 1
2 = ellipse : e < 1
3 = hyperbola : e > 1

1st law of Kepler

True anomaly

e < 1 -> ellipse with the star at one focus
p = a(1-e2), with a the semi-major axis
p = h2/GM 
h = [GMa(1-e2)]1/2

Distance focus-centre = ae
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f = true anomaly

f = 0? -> pericentre
ψ = ϖ
r = a(1-e)

Ψ (= λ) = true longitude 
ϖ = longitude of pericentre

f = 180° -> apocentre
r = a(1+e)

Ψ = f + ϖ

Ψ = 0

Area swept by the radius vector?

2nd law of Kepler
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Integration over a full orbit è Atot = h
P
2

with P the orbital period

But the area of an ellipse is πab, avec b2 = a2(1-e2)   

è πa2 1− e2 = h P
2
= GMa(1− e2 ) P

2

P = 2π a
3
2

GM
è 3rd law of Kepler
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Orbital energy and velocity

Back to the equation of relative motion

Integration   è

è Increases if r decreases
Maximum at pericentre

Scalar product by 

è
Orbital energy does not depend on e

vs h = µa(1− e2 )
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Orbital equation does not contain t
A relationship between f and t is thus required

Time of pericenter crossingè

è M = mean anomaly
n = mean motion

E = eccentric anomaly
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Equations relating E, f and r :

Equation relating M to E :
Kepler’s equation

Computing the orbital position at a time t :

- a, e, P and the time of pericenter crossing τ are known
- M is computed for the time t
- Numerical or series (e ~ 0) solution of Kepler’s equation è E
- Computation of f and r from E
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Motion in 3D

We use 2 cartesian coordinate systems: 

Plane of the sky

Opposite direction to Earth

North

East

ω = argument of pericentre

Ω = longitude of ascending node Ω + ω = ϖ

i = inclination
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Motion of the star -> barycentric coordinates

Centre of mass lies between the planet and the star

è
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Motion of the star -> barycentric coordinates

ω* = ωp + π

Radial velocity of the star

Systemic velocity Orbital velocity

Z* =
mp

mp +m*

rsin(ω* + f*)sin i
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Star has an orbit around the CM 
of the system that is antiphased to 
the one of the planet.. 



Radial velocity of the star

K =
mp sin i
mp +m∗

a
1− e2

G mp +m*

a1.5

K =
mp sin i
mp +m*

G
a(1− e2 )

Degeneracy in i

Varies as M*
-0.5 Varies as a-0.5
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Equation of motion 
Newtonian gravitation

Equation of motion 
General relativity

Metric? Schwartzchild: static space-time 
outside a spherical non-rotating distribution of 

mass 

Mercury has an excess of precession of 43’’/century -> very small effect
-> perturbative approach

u ≈ GM
h2

1+ ecos ψ(1−α)[ ]{ }
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The same values come back after a 
cycle with a phase range larger than 2 π

Relativistic precession

u ≈ GM
h2

1+ ecos ψ(1−α)[ ]{ }

α =
3(GM )2

h2c2
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-> orbit is no more closed



Mercury? a = 0.387 UA, e = 0.2, M = 1M¤è 43’’/century

Exoplanets ? Some have a very short eccentric orbit

Ex: HAT-P-23b : a = 0.0232 UA, e = 0.106, M = 1.13 M¤

è 16°/century

Could be measured within a few dozens years
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Precession from
orbit to orbit



3 bodies è the problem is no more analyticaly tractable

Simplification: 2 bodies in orbit around their common CM + 3rd body = 
point source
Restricted circular 3-body problem

Allows to tackle the motion of moons, Trojans, ring particules … 

Motions are studied within a 
synodic coordinates system = 
centered on the barycenter of 
M1-M2, in co-rotation with 
them, and with their distance 
as unit of distance
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Only 1 constant of the motion = Jacobi constant (or Jacobi integral)  

CJ = n
2 (x2 + y2 )+ 2 Gm1

r1
+
Gm2

r2

!

"
#

$

%
&− v2

Centrifugal and gravitational 
potential energy

By nulling v2 for a given CJ are obtained zero-
velocity curves that delimit the area allowed for 

the motion of the particule

21



5 equilibrium points = Lagrangian points

The points L1, L2 et L3 are unstables. L4 et L5 are stables for m1/m2 ≥ 27
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Trojans: Libration around the points L4 et L5

« Tadpole » and « horseshoe » orbits
23



Tadpole orbit: Jupiter’s Trojans (more than 2000!)

Also known for Uranus, Neptune, Mars, and the Earth 24



2010 TK7 : a 300m-size asteroid librating around the Earth’s L4 point!
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Horseshoe orbits: the Janus-Epimetheus example
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Circumbinary orbits: about 30 known so far

Kepler-16A and B : 
1 K-type and 1 M-type 
star in a 41d circular orbit

Kepler-16(AB)b: 
A Saturn-mass planet in a 
229d orbit around the 
binary

Other examples: Kepler-35, 38, 47, …
27



Limit distance beyond which the particule can no more remain in 
orbit around m2. It corresponds to the distance m2-L1

RH =
m2

3 m1 +m2( )

!

"
##

$

%
&&

1/3

a

Practically, a planetocentric orbit is stable if R << RH. The 
maximum distance for a stable orbit is larger is the orbit is 
retrograde.
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No analytical solution è numerical integration of the equations of motion 
is the general approach

Practically, symplectic integrators are often used, i.e. algorithms
integrating at each step the Hamilton equations while ensuring the 
conversation of key quantities like energy.
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H = Hamiltonian, which corresponds to total energy of the system.
p and q are canonical coordinates



Assumption: interactions within orbits can be averaged and we study the 
evolution of the averaged orbits = secular evolution

Correlated variations of e and i. Exchange of angular momentum 30



Regular, periodic, gravitational influence between 2 or more bodies due 
to some of their orbital parameters being related by an integer ratio
Ex: orbital resonances  (Galilean moons)

spin-orbit resonance (Moon)  

Orbits do not average anymore, each orbit matters

Analogy: forced harmonic oscillator

m d 2x
dt2

+mωo
2x = Ff cosω f t

x =
Ff

m(ωo
2 −ω f

2 )
cosω f t +C1 cosωot +C2 sinωot

x =
Ff
2mωo

t cosωot +C1 cosωot +C2 sinωot

Si ωf ≠ ωo

Si ωf = ωo

Cumulative effects do not only make possible exchange of 
angular momentum but also of orbital energy 31



Consider two planets in circular coplanar orbits with 

n2
n1
≈

p
p+ q

with ni=2π/Pi is the mean motion, and p and q are two integers.

ΔT = 2π
n1 − n2

=
2π

n1
q

p+ q

=
p+ q
q

P1

And thus qΔT = (p+ q)P1 = pP2

Each q-th conjunction occurs at the same longitude.
q = resonance order

If conjunction at t = 0, next conjunction when n1t - n2t = 2π
So the time difference betwen 2 conjunctions is 
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If the outer planet has e2≠0 and ϖ2≠0, resonance if
.

n2 − ϖ 2

n1 − ϖ 2

=
p

p+ q

In this case, we have: (p+ q)n2 − pn1 − q ϖ 2 = 0

Each q-th conjonction takes place at the same true anomaly for the outer planet, 
but it does not correspond anymore to the same longitude, i.e. to the same point in 

an inertial system.

The commensurability of orbital periods does not automatically mean true 
orbital resonance (precession). 33



Effect of resonances: stabilization
ex: Jupiter-Io-Europa-Ganymede
λI − 2λE +ϖ I = 0°,
nI − 2nE + ϖ I = 0,

λI − 2λE +ϖ E =180°,
nI − 2nE + ϖ E = 0,

λE − 2λG +ϖ E = 0°,
nE − 2nG + ϖ E = 0

φL = λI −3λE + 2λG =180°,

nI −3nE + 2nG = 0

Laplace’s relationships:

Ever triple conjunction

Libration of φL with a period of 
2017 days and with an 
amplitude of 0.064°

Maintains the eccentricity of  
Io (0.004) and Europa (0.01)
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Effect of resonances : destabilization
ex: Kirkwood’s gaps

Chaotic orbits 35



Ford et al. (2000)

Lz = (1− e2 ) cosi

Oscillations of e and i with

conserved

Mechanism able to produce eccentric 
Jupiters and hot Jupiters  

Star with planet, + a star or a massive planet on a outer and very inclined orbit
(>39°)

Coupled oscillation of e and i of the inner planet
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Are assumed a star and a close-in planet.

The star distorts the planet, and reciprocally è tidal bulges

The two bodies have a non-zero viscosity è friction forces
è heating and phase shift of the bulges

Star Planet

Here : Prot,* < Porb,p
37



Star Planet

Here: Prot,* < Porb,p

tan2ε =Q−1

where Q = tidal dissipation function
= maximum energy stored in the tidal deformation over the tidal energy
dissipated as heat per cycle

withh

= 10 – 500 for terrestrial bodies
> 105 for giant planets and stars (much more fluid)

Note: Q depends on the orbital period too 38



Star Planet

Here: Prot,* < Porb,p

The tidal deformation of the star results in a torque that accelerates the planet and 

slows down the stellar rotation (in the case of the Earth-Moon system) 

è Transfert of energy and angular momentum between the two bodies

è Here Prot,* and Porb,p increase, in the opposite case they decrease

è Variation of Prot,*, Prot,p, I*, Ip, a, e 

è Final outcome: complete equilibrium (Prot,* = Prot,p = Porb; I* =  Ip; e = 0) or tidal 

disruption (hot Jupiters) or damped orbital recession (Moon) 39
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1. Very fast evolution towards Porb = Prot,p in ~1Ma 
è spin-orbit resonance (tidal locking)

2. Much slower circularization of the orbit within a timescale of ~1Ga

3. Continuous shrinking of the orbit due to tides raised by the planet on 
the star (making the star rotate faster)

4. Prot,* is modified by tidal effects (acceleration), but also by stellar wind 
(magnetic braking), so complete equilibrium is never reached and da/dt < 
0 

Final outcome: tidal disruption
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Rocky planets? Evolution is much slower because of much smaller tides on 
the star + much less energy dissipated per cycle (e.g. Mercury with e=0.21)



The planet migrates until reaching its Roche limit, distance for which the stellar 
gravity and the centrifugal forces surpass its internal cohesion forces 

Shoemaker-Levy 9 comet (17/05/1994) 

If differentiated planet: only the outer layers are 
torn apart è chtonian planet
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H =
63
4
(GM*)

3/2M*Rp
5

Qp
' a−15/2e2,

Io

Jackson et al. (2009b)
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Important for 
energy budget of 

short-period planets
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