Introduction to exoplanetology

Michaël Gillon (michael.gillon@uliege.be)
 Olivier Absil (olivier.absil@uliege.be)

Introduction to exoplanetology. II. Planetary systems dynamics

Michaël Gillon
michael.gillon@uliege.be

The two-body problems

Are assumed a star of mass m_{*} and a planet of mass m_{p}. Their equations of motion in a random inertial reference system are:

$$
\ddot{\boldsymbol{r}}_{*}=\frac{G m_{p}\left(\boldsymbol{r}_{p}-\boldsymbol{r}_{*}\right)}{\left|\boldsymbol{r}_{p}-\boldsymbol{r}_{*}\right|^{3}}, \quad \ddot{\boldsymbol{r}}_{p}=\frac{G m_{*}\left(\boldsymbol{r}_{*}-\boldsymbol{r}_{p}\right)}{\left|\boldsymbol{r}_{*}-\boldsymbol{r}_{p}\right|^{3}}
$$

Change of variables : $\quad \boldsymbol{R} \equiv \frac{m_{*} \boldsymbol{r}_{*}+m_{p} \boldsymbol{r}_{p}}{m_{*}+m_{p}}, \quad \boldsymbol{r} \equiv \boldsymbol{r}_{p}-\boldsymbol{r}_{*}$

$$
\begin{array}{cc}
\text { Vector of position of the } & \text { Vector of position of the } \\
\text { center of mass } & \text { Planet relative to the star }
\end{array}
$$

$$
\ddot{\boldsymbol{R}}=0 \quad \text { Center of mass is in uniform motion }
$$

$$
\ddot{\boldsymbol{r}}=-\frac{G M}{r^{3}} \boldsymbol{r}, \quad M \equiv m_{*}+m_{p}
$$

Equation of motion for the planet relative to the star

= equation of relative motion of a test particle in orbit around a mass M

The two-body problem

$$
\begin{aligned}
& \underset{\begin{array}{l}
\text { Orbital angular } \\
\text { momentum }
\end{array}}{\boldsymbol{h}=\boldsymbol{r} \wedge \dot{\boldsymbol{r}}} \quad \longleftrightarrow \dot{\boldsymbol{h}}=\dot{\boldsymbol{r}} \wedge \dot{\boldsymbol{r}}+\boldsymbol{r} \wedge \ddot{\boldsymbol{r}}=-\boldsymbol{r} \wedge \frac{G M}{r^{3}} \boldsymbol{r}=0 \\
& \longrightarrow \text { Motion in a plane }
\end{aligned}
$$

The two-body problem

Representation in polar coordinates (r, Ψ) system

$$
\begin{gathered}
\boldsymbol{r}=r \hat{\boldsymbol{e}}_{r} \\
\ddot{\boldsymbol{e}_{r}} / d t=\dot{\psi} \hat{\boldsymbol{e}}_{\psi} \quad d \hat{\boldsymbol{e}}_{\psi} / d t=-\dot{\psi} \hat{\boldsymbol{e}}_{r} \\
\ddot{\boldsymbol{r}}=-\frac{G M}{r^{3}} \boldsymbol{r}
\end{gathered} \begin{aligned}
& \square \\
&
\end{aligned}
$$

$$
\ddot{r}-r \dot{\psi}^{2}=-\frac{G M}{r^{2}} \quad \square \quad \ddot{r}-\frac{h^{2}}{r^{3}}=-\frac{G M}{r^{2}}
$$

The two-body problem

Assuming polar coordinates r and ψ
$r=$ star - planet distance
$\mathrm{u}=1 / \mathrm{r}$, et ψ replaces t through $\quad \frac{d}{d t}=\dot{\psi} \frac{d}{d \psi}=\frac{h}{r^{2}} \frac{d}{d \psi}$

Non-homogeneous, second-order, linear differential equation

General solution: $\quad u=\frac{1}{r}=\frac{G M}{h^{2}}[1+\underset{\downarrow}{\downarrow} \underset{\text { amplitude }}{\substack{\text { phase term } \\ \cos (\psi-\varpi) \\ \text { reference angle }}}$

We go back to $r(\psi)$:

$$
r=\frac{p}{1+e \cos (\psi-\varpi)}
$$

$p=h^{2} / G M=$ semi-latus rectum $e \geq 0=$ eccentricity
Equation of a conic section in polar coordinates

The two-body problem

(1)

(2)

(3)

$$
\begin{aligned}
& 1=\text { parabola : e=1 } \\
& 2=\text { ellipse : } e<1 \\
& 3=\text { hyperbola : } e>1
\end{aligned}
$$

$1^{\text {st }}$ law of Kepler
$e<1$-> ellipse with the star at one focus $p=a\left(1-e^{2}\right)$, with a the semi-major axis $p=\mathrm{h}^{2} / \mathrm{GM}$
$\mathrm{h}=\left[\mathrm{GMa}\left(1-\mathrm{e}^{2}\right)\right]^{1 / 2}$
Distance focus-centre $=a e$

$$
r=\frac{a\left(1-e^{2}\right)}{1+e \cos f}
$$

$$
f=\psi-\varpi
$$

True anomaly

The two-body problem

$$
\begin{aligned}
& f=\text { true anomaly } \\
& f=0 ?->\text { pericentre } \\
& \Psi=\varpi \\
& r=a(1-e) \\
& \Psi(=\lambda)=\text { true longitude } \\
& \varpi=\text { longitude of pericentre } \\
& f=180^{\circ}->\text { apocentre } \\
& r=a(1+e)
\end{aligned}
$$

Area swept by the radius vector?

$$
d A=\frac{1}{2} r^{2} d \psi
$$

$$
\dot{A}=\frac{1}{2} r^{2} \dot{\psi}=\frac{1}{2} h
$$

The two-body problem

$$
\dot{A}=\frac{1}{2} r^{2} \dot{\psi}=\frac{1}{2} h
$$

Integration over a full orbit $\rightarrow \quad A_{t o t}=h \frac{P}{2} \quad$ with P the orbital period
But the area of an ellipse is nab, avec $b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\rightarrow \quad \pi a^{2} \sqrt{1-e^{2}}=h \frac{P}{2}=\sqrt{G M a\left(1-e^{2}\right)} \frac{P}{2}
$$

$$
\rightarrow \quad P=2 \pi \frac{a^{\frac{3}{2}}}{\sqrt{G M}}
$$

The two-body problem

Orbital energy and velocity

Back to the equation of relative motion $\quad \ddot{\boldsymbol{r}}=-\frac{G M}{r^{3}} \boldsymbol{r}$
Scalar product by $\quad \dot{\boldsymbol{r}} \quad \dot{\boldsymbol{r}} . \ddot{\boldsymbol{r}}+\frac{G M}{r^{3}} \boldsymbol{r} \cdot \dot{\boldsymbol{r}}=\dot{\boldsymbol{r}} . \ddot{\boldsymbol{r}}+\frac{G M}{r^{2}} \dot{r}=0$

$$
\text { Integration } \rightarrow \frac{1}{2} v^{2}-\frac{G M}{r}=C=\mathrm{constant}
$$

Orbital energy does not depend on e

$$
C=-\frac{G M}{2 a} \quad \rightarrow \quad \text { vs } h=\sqrt{\mu a\left(1-e^{2}\right)}
$$

$$
v^{2}=G M\left(\frac{2}{r}-\frac{1}{a}\right) \quad \rightarrow \quad \begin{aligned}
& \text { Increases if } r \text { decreases } \\
& \text { Maximum at pericentre }
\end{aligned}
$$

The two-body problem

$$
r=\frac{a\left(1-e^{2}\right)}{1+e \cos f}
$$

Orbital equation does not contain t
A relationship between f and t is thus required
$\rightarrow t=\tau \quad$ Time of pericenter crossing
$\rightarrow M=2 \pi \frac{t-\tau}{P}=n(t-\tau) \quad \begin{aligned} & \mathbf{M}=\text { mean anomaly } \\ & n=\text { mean motion }\end{aligned}$

The two-body problem

Equations relating E, f and r :

$$
\begin{aligned}
r & =a(1-e \cos E) \\
\cos f & =\frac{\cos E-e}{1-e \cos E} \\
\tan \frac{f}{2} & =\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}
\end{aligned}
$$

Equation relating M to E :

$$
n(t-\tau)=M=E-e \sin E
$$

Kepler's equation

Computing the orbital position at a time t :

- a, e, P and the time of pericenter crossing τ are known
- M is computed for the time t
- Numerical or series (e ~ 0) solution of Kepler's equation $\rightarrow E$
- Computation of f and r from E

The two-body problem

Motion in 3D

We use 2 cartesian coordinate systems:

$$
r=\left(O_{*} ; \hat{\boldsymbol{x}} ; \hat{\boldsymbol{y}} ; \hat{\boldsymbol{y}}\right) \quad R=\left(O_{*} ; \hat{\boldsymbol{X}} ; \hat{\boldsymbol{Y}} ; \hat{\boldsymbol{Z}}\right)
$$

Opposite direction to Earth

The two-body problem

Motion of the star $->$ barycentric coordinates

$$
\begin{gathered}
\boldsymbol{R}_{*}=\boldsymbol{r}_{*}-\boldsymbol{R} \\
\boldsymbol{R}_{\boldsymbol{p}}=\boldsymbol{r}_{\boldsymbol{p}}-\boldsymbol{R} \\
\boldsymbol{R} \equiv \frac{m_{*} \boldsymbol{r}_{*}+m_{p} \boldsymbol{r}_{p}}{m_{*}+m_{p}}
\end{gathered}
$$

$m_{*} \boldsymbol{R}_{*}+m_{p} \boldsymbol{R}_{\boldsymbol{p}}=0 \quad$ Centre of mass lies between the planet and the star

$$
\begin{array}{|c|}
\hline R_{*}+R_{p}=r \\
\hline m_{*} R_{*}=m_{p} R_{p}
\end{array} \rightarrow \quad R_{*}=\frac{m_{p}}{m_{p}+m_{*}} r \text { et } R_{p}=\frac{m_{*}}{m_{p}+m_{*}} r
$$

$$
a_{*}=\frac{m_{p}}{m_{p}+m_{*}} a \text { et } a_{p}=\frac{m_{*}}{m_{p}+m_{*}} a
$$

The two-body problem

Motion of the star $->$ barycentric coordinates

$$
\omega_{*}=\omega_{p}+\pi
$$

Star has an orbit around the CM of the system that is antiphased to the one of the planet..

$$
r_{*}=\boldsymbol{R}+\boldsymbol{R}_{*}
$$

Radial velocity of the star

$$
V_{r}=\dot{\boldsymbol{r}}_{*} \cdot \hat{\boldsymbol{Z}}=\underset{\substack{\downarrow_{r} \\ \text { Systemic velocity }}}{\gamma_{r}} \frac{m_{p}}{m_{p}+m_{*}}(\dot{r} \sin (\omega+f) \sin i+r \dot{f} \cos (\omega+f) \sin i)
$$

The two-body problem

Radial velocity of the star

$$
V_{r}=\gamma_{r}+K(\cos (\omega+f)+e \cos \omega)
$$

$$
K=\frac{m_{p} \sin i}{m_{p}+m_{*}} \frac{n a}{\sqrt{1-e^{2}}}
$$

$$
K=\frac{m_{p} \sin i}{m_{p}+m_{w}} \frac{a}{\sqrt{1-e^{2}}} \frac{\sqrt{G} \sqrt{m_{p}+m_{*}}}{a^{1.5}}
$$

Degeneracy in i

The two-body problem in general relativity

Equation of motion
Newtonian gravitation

$$
\frac{d^{2} u}{d \psi^{2}}+u=\frac{G M}{h^{2}}
$$

Equation of motion
General relativity

$$
\frac{d^{2} u}{d \psi^{2}}+u=\frac{G M}{h^{2}}+\frac{3 G M}{c^{2}} u^{2}
$$

Metric? Schwartzchild: static space-time outside a spherical non-rotating distribution of mass

Mercury has an excess of precession of 43 "/century -> very small effect
-> perturbative approach

$$
\begin{aligned}
u=\frac{1}{r}=\frac{G M}{h^{2}}[1+e \cos \psi]+\Delta u \\
u \approx \frac{G M}{h^{2}}\{1+e \cos [\psi(1-\alpha)]\}
\end{aligned}
$$

The two-body problem in general relativity

$$
u \approx \frac{G M}{h^{2}}\{1+e \cos [\psi(1-\alpha)]\}
$$

The same values come back after a cycle with a phase range larger than 2π
$->$ orbit is no more closed

$$
\alpha=\frac{3(G M)^{2}}{h^{2} c^{2}}
$$

Relativistic precession

The two-body problem in general relativity

$\begin{gathered}\text { Precession from } \\ \text { orbit to orbit }\end{gathered} \delta \psi=2 \pi \alpha=\frac{6 \pi(G M)^{2}}{h^{2} c^{2}}=\frac{6 \pi G M}{a\left(1-e^{2}\right) c^{2}}$

Mercury? $a=0.387 \mathrm{UA}, e=0.2, \mathrm{M}=1 \mathrm{M}_{\odot} \rightarrow 43^{\prime \prime} /$ century

Exoplanets ? Some have a very short eccentric orbit
Ex: HAT-P-23b : $a=0.0232$ UA, $e=0.106, \mathrm{M}=1.13 \mathrm{M}_{\odot}$
$\rightarrow 16 \%$ century
Could be measured within a few dozens years

The three-body problem

3 bodies \rightarrow the problem is no more analyticaly tractable
Simplification: 2 bodies in orbit around their common $\mathrm{CM}+3^{\text {rd }}$ body $=$ point source

Restricted circular 3-body problem

Allows to tackle the motion of moons, Trojans, ring particules ...

Motions are studied within a synodic coordinates system = centered on the barycenter of M1-M2, in co-rotation with them, and with their distance as unit of distance

The restricted circular three-body problem

Only 1 constant of the motion = Jacobi constant (or Jacobi integral)

$$
C_{J}=n^{2}\left(x^{2}+y^{2}\right)+2\left(\frac{G m_{1}}{r_{1}}+\frac{G m_{2}}{r_{2}}\right)-v^{2}
$$

Centrifugal and gravitational potential energy

By nulling v^{2} for a given C_{J} are obtained zerovelocity curves that delimit the area allowed for the motion of the particule

The restricted circular three-body problem

5 equilibrium points = Lagrangian points

The points L_{1}, L_{2} et L_{3} are unstables. L_{4} et L_{5} are stables for $m_{1} / m_{2} \geq 27$

The restricted circular three-body problem

Trojans: Libration around the points L4 et L5

« Tadpole» and « horseshoe» orbits

The restricted circular three-body problem

Tadpole orbit: Jupiter's Trojans (more than 2000!)

Earth's Trojan

2010 TK $_{7}$: a 300m-size asteroid librating around the Earth's L_{4} point!

The restricted circular three-body problem

Horseshoe orbits: the Janus-Epimetheus example

The restricted circular three-body problem

Circumbinary orbits: about 30 known so far

Kepler-16A and B :
1 K-type and 1 M-type star in a 41d circular orbit

Kepler-16(AB)b:
A Saturn-mass planet in a 229d orbit around the binary

Other examples: Kepler-35, 38, 47, ...

The Hill radius R_{H}

Limit distance beyond which the particule can no more remain in orbit around m_{2}. It corresponds to the distance $m_{2}-L_{1}$

$$
R_{H}=\left(\frac{m_{2}}{3\left(m_{1}+m_{2}\right)}\right)^{1 / 3} a
$$

Practically, a planetocentric orbit is stable if $R \ll R_{H}$. The maximum distance for a stable orbit is larger is the orbit is retrograde.

The N-body problem

No analytical solution \rightarrow numerical integration of the equations of motion is the general approach

$$
\ddot{\mathbf{r}}_{i}=-G \sum_{j=1, j \neq i}^{j=N} m_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathrm{r}_{j}\right|^{3}}
$$

Practically, symplectic integrators are often used, i.e. algorithms integrating at each step the Hamilton equations while ensuring the conversation of key quantities like energy.

$$
\dot{p}=-\frac{\partial H}{\partial q} \quad \text { and } \quad \dot{q}=\frac{\partial H}{\partial p}
$$

$H=$ Hamiltonian, which corresponds to total energy of the system.
p and q are canonical coordinates

Secular evolution

Assumption: interactions within orbits can be averaged and we study the evolution of the averaged orbits = secular evolution

Resonances

Regular, periodic, gravitational influence between 2 or more bodies due to some of their orbital parameters being related by an integer ratio
Ex: orbital resonances (Galilean moons) spin-orbit resonance (Moon)

Orbits do not average anymore, each orbit matters
Analogy: forced harmonic oscillator

$$
\begin{gathered}
m \frac{d^{2} x}{d t^{2}}+m \omega_{o}^{2} x=F_{f} \cos \omega_{f} t \\
\text { Si } \omega_{f} \neq \omega_{o} \quad x=\frac{F_{f}}{m\left(\omega_{o}^{2}-\omega_{f}^{2}\right)} \cos \omega_{f} t+C_{1} \cos \omega_{o} t+C_{2} \sin \omega_{o} t \\
\text { Si } \omega_{f}=\omega_{o} \quad x=\frac{F_{f}}{2 m \omega_{o}} \downarrow \cos \omega_{o} t+C_{1} \cos \omega_{o} t+C_{2} \sin \omega_{o} t \\
\begin{array}{l}
\text { Cumulative effects do not only make possible exchange of } \\
\text { angular momentum but also of orbital energy }
\end{array}
\end{gathered}
$$

Orbital resonances

Consider two planets in circular coplanar orbits with

$$
\frac{n_{2}}{n_{1}} \approx \frac{p}{p+q}
$$

with $n_{i}=2 \pi / P_{i}$ is the mean motion, and p and q are two integers.
If conjunction at $t=0$, next conjunction when $n_{1} t-n_{2} t=2 \pi$
So the time difference betwen 2 conjunctions is

$$
\Delta T=\frac{2 \pi}{n_{1}-n_{2}}=\frac{2 \pi}{n_{1} \frac{q}{p+q}}=\frac{p+q}{q} P_{1}
$$

And thus

$$
q \Delta T=(p+q) P_{1}=p P_{2}
$$

Each q-th conjunction occurs at the same longitude.

$$
q=\text { resonance order }
$$

Orbital resonances

If the outer planet has $\mathrm{e}_{2} \neq 0$ and $\dot{\varpi}_{2} \neq 0$, resonance if

$$
\frac{n_{2}-\dot{\varpi}_{2}}{n_{1}-\dot{\varpi}_{2}}=\frac{p}{p+q}
$$

In this case, we have: $(p+q) n_{2}-p n_{1}-q \dot{\varpi}_{2}=0$

Each q-th conjonction takes place at the same true anomaly for the outer planet, but it does not correspond anymore to the same longitude, i.e. to the same point in an inertial system.

The commensurability of orbital periods does not automatically mean true orbital resonance (precession).

Orbital resonances

Effect of resonances: stabilization

ex: Jupiter-lo-Europa-Ganymede

$$
\begin{array}{lll}
\lambda_{I}-2 \lambda_{E}+\varpi_{I}=0^{\circ}, & \lambda_{I}-2 \lambda_{E}+\varpi_{E}=180^{\circ}, & \lambda_{E}-2 \lambda_{G}+\varpi_{E}=0^{\circ} \\
n_{I}-2 n_{E}+\dot{\varpi}_{I}=0, & n_{I}-2 n_{E}+\dot{\varpi}_{E}=0, & n_{E}-2 n_{G}+\dot{\varpi}_{E}=0
\end{array}
$$

Laplace's relationships:

$$
\begin{gathered}
\phi_{L}=\lambda_{I}-3 \lambda_{E}+2 \lambda_{G}=180^{\circ}, \\
n_{I}-3 n_{E}+2 n_{G}=0
\end{gathered}
$$

GANYMEDE 4:1

Ever triple conjunction

EUROPA 2:1 IO 1:1

Libration of ϕ_{L} with a period of 2017 days and with an amplitude of 0.064°

Maintains the eccentricity of lo (0.004) and Europa (0.01)

Orbital resonances

Effect of resonances : destabilization

ex: Kirkwood's gaps

Kozai mechanism

Star with planet, + a star or a massive planet on a outer and very inclined orbit ($>39^{\circ}$)

Coupled oscillation of e and i of the inner planet

Oscillations of e and i with
$L_{z}=\sqrt{\left(1-e^{2}\right)} \cos i \quad$ conserved
$T_{\text {Kozai }}=2 \pi \frac{\sqrt{G M}}{G m_{2}} \frac{a_{2}^{3}}{a^{3 / 2}}\left(1-e_{2}^{2}\right)^{3 / 2}=\frac{M}{m_{2}} \frac{P_{2}^{2}}{P}\left(1-e_{2}^{2}\right)^{3 / 2}$
Mechanism able to produce eccentric Jupiters and hot Jupiters

Tidal effects

Are assumed a star and a close-in planet.
The star distorts the planet, and reciprocally \rightarrow tidal bulges
The two bodies have a non-zero viscosity \rightarrow friction forces \rightarrow heating and phase shift of the bulges

Here : $\mathrm{P}_{\text {rot, }}{ }^{*}<\mathrm{P}_{\text {orb, }}$

Tidal effects

where $Q=$ tidal dissipation function
= maximum energy stored in the tidal deformation over the tidal energy dissipated as heat per cycle
= $10-500$ for terrestrial bodies
$>10^{5}$ for giant planets and stars (much more fluid)
Note: Q depends on the orbital period too

Tidal effects

The tidal deformation of the star results in a torque that accelerates the planet and slows down the stellar rotation (in the case of the Earth-Moon system)
\rightarrow Transfert of energy and angular momentum between the two bodies
\rightarrow Here $\mathrm{P}_{\text {rot, },}$ and $\mathrm{P}_{\text {orb, }, \mathrm{p}}$ increase, in the opposite case they decrease
\rightarrow Variation of $P_{\text {rot },}, P_{\text {rot, },}, I_{*}, I_{p}, a, e$
\rightarrow Final outcome: complete equilibrium ($\mathrm{P}_{\text {rot },{ }^{*}}=\mathrm{P}_{\text {rot }, \mathrm{p}}=\mathrm{P}_{\text {orb }} ; \mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{p}} ; \mathrm{e}=0$) or tidal disruption (hot Jupiters) or damped orbital recession (Moon)

Tidal evolution of hot Jupiters ($\mathrm{P}_{\text {orb }}<\mathrm{P}_{\text {rot, }}$)

Tidal evolution of hot Jupiters ($\mathrm{P}_{\mathrm{orb}}<\mathrm{P}_{\text {rot },}$)

1. Very fast evolution towards $P_{\text {orb }}=P_{\text {rot,p }}$ in $\sim 1 \mathrm{Ma}$
\Rightarrow spin-orbit resonance (tidal locking)
2. Much slower circularization of the orbit within a timescale of $\sim 1 \mathrm{Ga}$
3. Continuous shrinking of the orbit due to tides raised by the planet on the star (making the star rotate faster)
4. $P_{\text {rot,* }}$ is modified by tidal effects (acceleration), but also by stellar wind (magnetic braking), so complete equilibrium is never reached and da/dt < 0

Final outcome: tidal disruption

Rocky planets? Evolution is much slower because of much smaller tides on the star + much less energy dissipated per cycle (e.g. Mercury with e=0.21)

Tidal disruption

The planet migrates until reaching its Roche limit, distance for which the stellar gravity and the centrifugal forces surpass its internal cohesion forces

$$
d \approx 2.44 R_{M}\left(\frac{\rho_{M}}{\rho_{m}}\right)^{1 / 3}
$$

Shoemaker-Levy 9 comet (17/05/1994)

If differentiated planet: only the outer layers are torn apart \rightarrow chtonian planet

Tidal heating

Important for energy budget of short-period planets

$$
H=\frac{63}{4} \frac{\left(G M_{*}\right)^{3 / 2} M_{*} R_{p}^{5}}{Q_{p}^{\prime}} a^{-15 / 2} e^{2}
$$

Jackson et al. (2009b)

References

M. Perryman

Cambridge University Press
Chapters 2, 3, 6 \& 10

C. D. Murray \& S. F. Dermott Cambridge University Press

S. Seager

University of Arizona Press
Chapters 2, 10 \& 11

I. de Pater \& J. J. Lissauer

Cambridge University Press Chapter 2 Cambidge Univerit Press

