Introduction to exoplanetology

Michaël Gillon (<u>michael.gillon@uliege.be</u>) Olivier Absil (<u>olivier.absil@uliege.be</u>)

Introduction to exoplanetology. II.

Planetary systems dynamics

Michaël Gillon michael.gillon@uliege.be

Master in Space Sciences – Academic year 2021-2022

Are assumed a star of mass m_* and a planet of mass m_p . Their equations of motion in a random inertial reference system are:

= equation of relative motion of a test particle in orbit around a mass M

Representation in polar coordinates (r, ψ) system

$$r = r\hat{e}_r$$
 $d\hat{e}_r/dt = \dot{\psi}\hat{e}_{\psi}$ $d\hat{e}_{\psi}/dt = -\dot{\psi}\hat{e}_r$

$$\ddot{\boldsymbol{r}} = -\frac{GM}{r^3}\boldsymbol{r} \quad \square \qquad \dot{\boldsymbol{r}} - r\dot{\psi}^2 = -\frac{GM}{r^2}, \qquad 2\dot{r}\dot{\psi} + r\ddot{\psi} = 0$$

Orbital angular momentum

 $2\dot{r}\dot{\psi}+r\ddot{\psi}=0$: multiplication by r and integration (

$$r^2\dot{\psi} = \text{constant} = h$$

$$\ddot{r} - r\dot{\psi}^2 = -\frac{GM}{r^2}$$
 \implies $\ddot{r} - \frac{h^2}{r^3} = -\frac{GM}{r^2}$

Assuming polar coordinates r and ψ r = star – planet distance u=1/r, et ψ replaces t through $\frac{d}{dt}$

$$\frac{d}{dt} = \dot{\psi} \frac{d}{d\psi} = \frac{h}{r^2} \frac{d}{d\psi}$$

6

$$\frac{d^2u}{d\psi^2} + u = \frac{GM}{h^2}$$

Non-homogeneous, second-order, linear differential equation

General solution:
$$u = \frac{1}{r} = \frac{GM}{h^2} \begin{bmatrix} 1 + e \cos(\psi - \varpi) \end{bmatrix}$$

amplitude reference angle

We go back to $r(\psi)$:

$$r = \frac{p}{1 + e\cos(\psi - \varpi)}$$

$$p = h^2/GM = semi-latus rectum$$

$$e \ge 0 = eccentricity$$
Equation of a conic section in polar coordinates

 $e < 1 \rightarrow$ ellipse with the star at one focus $p = a(1-e^2)$, with *a* the semi-major axis $p = h^2/GM$ **h = [GMa(1-e^2)]^{1/2}** Distance focus-centre = *ae*

$$r = \frac{a(1-e^2)}{1+e\cos f}$$

 $f = \psi - arpi$ True anomaly

- 1 = parabola : *e* = 1
- 2 = ellipse : *e* < 1
- 3 = hyperbola : e > 1

1st law of Kepler

Area swept by the radius vector?

$$dA = \frac{1}{2}r^{2}d\psi$$
$$\dot{A} = \frac{1}{2}r^{2}\dot{\psi} = \frac{1}{2}h \longrightarrow 2^{nd} \text{ law of Kepler}$$

$$\dot{A} = \frac{1}{2}r^2\dot{\psi} = \frac{1}{2}h$$

Integration over a full orbit $\rightarrow A_{tot} = h \frac{P}{2}$

But the area of an ellipse is πab , avec $b^2 = a^2(1-e^2)$

→
$$\pi a^2 \sqrt{1 - e^2} = h \frac{P}{2} = \sqrt{GMa(1 - e^2)} \frac{P}{2}$$
→ $P = 2\pi \frac{a^2}{\sqrt{GM}}$
3rd law of Kepler

Orbital energy and velocity

Back to the equation of relative motion

$$\ddot{\boldsymbol{r}} = -\frac{GM}{r^3}\boldsymbol{r}$$

Scalar product by
$$\dot{\boldsymbol{r}}$$
 $\dot{\boldsymbol{r}}$. $\dot{\boldsymbol{r}}$. $\ddot{\boldsymbol{r}}$ + $\frac{GM}{r^3}\boldsymbol{r}$. $\dot{\boldsymbol{r}}$ = $\dot{\boldsymbol{r}}$. $\ddot{\boldsymbol{r}}$ + $\frac{GM}{r^2}\dot{\boldsymbol{r}}$ = 0

Integration
$$\rightarrow \frac{1}{2}v^2 - \frac{GM}{r} = C = \text{constant}$$

 $C = -\frac{GM}{2a} \xrightarrow{\bullet} 0$ rbital energy does not depend on e $vs \quad h = \sqrt{\mu a(1 - e^2)}$

$$v^2 = GM(\frac{2}{r} - \frac{1}{a}) \rightarrow$$

Increases if *r* decreases Maximum at pericentre

$$r = \frac{a(1-e^2)}{1+e\cos f}$$

Orbital equation does not contain *t* A relationship between *f* and *t* is thus required

ightarrow t = au Time of pericenter crossing

→
$$M = 2\pi \frac{t - \tau}{P} = n(t - \tau)$$
 M = mean anomaly
 $n =$ mean motion

Equations relating *E*, *f* and *r*: $r = a(1 - e \cos E)$ $\cos f = \frac{\cos E - e}{1 - e \cos E}$ $\tan \frac{f}{2} = \sqrt{\frac{1 + e}{1 - e}} \tan \frac{E}{2}$

Equation relating M to E :

$$n(t-\tau) = M = E - e\sin E$$

Kepler's equation

Computing the orbital position at a time t :

- a, e, P and the time of pericenter crossing τ are known
- *M* is computed for the time *t*
- Numerical or series (e ~ 0) solution of Kepler's equation $\rightarrow E$
- Computation of *f* and *r* from *E*

Motion in 3D

We use 2 cartesian coordinate systems:

Motion of the star -> barycentric coordinates

$$egin{aligned} m{R}_{*} &= m{r}_{*} - m{R} \ m{R}_{m{p}} &= m{r}_{m{p}} - m{R} \ m{R} &\equiv rac{m_{*}m{r}_{*} + m_{p}m{r}_{p}}{m_{*} + m_{p}} \end{aligned}$$

 $m_* R_* + m_p R_p = 0$ Centre of mass lies between the planet and the star

$$R_{*} + R_{p} = r$$

$$m_{*}R_{*} = m_{p}R_{p}$$

$$R_{*} = \frac{m_{p}}{m_{p} + m_{*}}r \text{ et } R_{p} = \frac{m_{*}}{m_{p} + m_{*}}r$$

$$a_* = \frac{m_p}{m_p + m_*} a \text{ et } a_p = \frac{m_*}{m_p + m_*} a$$

14

Motion of the star -> barycentric coordinates

 $\omega_* = \omega_p + \pi$

Star has an orbit around the CM of the system that is antiphased to the one of the planet..

$$Z_* = \frac{m_p}{m_p + m_*} r \sin(\omega_* + f_*) \sin i$$

 $\boldsymbol{r_*} = \boldsymbol{R} + \boldsymbol{R_*}$

Radial velocity of the star

$$V_r = \dot{r_*} \cdot \hat{Z} = \gamma_r + \frac{m_p}{m_p + m_*} \left(\dot{r} \sin(\omega + f) \sin i + r\dot{f} \cos(\omega + f) \sin i \right)$$
Systemic velocity
Orbital velocity

Radial velocity of the star

$$V_r = \gamma_r + K\big(\cos(\omega + f) + e\cos\omega\big)$$

$$K = \frac{m_p \sin i}{m_p + m_*} \frac{na}{\sqrt{1 - e^2}}$$

$$K = \frac{m_p \sin i}{m_p + m_*} \frac{a}{\sqrt{1 - e^2}} \frac{\sqrt{G}\sqrt{m_p + m_*}}{a^{1.5}}$$

Degeneracy in i
$$K = \frac{m_p \sin i}{\sqrt{m_p + m_*}} \sqrt{\frac{G}{a(1 - e^2)}}$$

Varies as M*^{-0.5} Varies as $a^{-0.5}$

The two-body problem in general relativity

Mercury has an excess of precession of 43"/century -> very small effect

-> perturbative approach

mass

$$u = \frac{1}{r} = \frac{GM}{h^2} \left[1 + e \cos \psi \right] + \Delta u$$
$$u \approx \frac{GM}{h^2} \left\{ 1 + e \cos \left[\psi (1 - \alpha) \right] \right\}$$

The two-body problem in general relativity

The two-body problem in general relativity

Precession from
$$\delta\psi = 2\pi\alpha = \frac{6\pi (GM)^2}{h^2c^2} = \frac{6\pi GM}{a(1-e^2)c^2}$$

Mercury? a = 0.387 UA, e = 0.2, M = 1M_{\odot} \rightarrow 43"/century

Exoplanets ? Some have a very short eccentric orbit

Ex: HAT-P-23b : *a* = 0.0232 UA, *e* = 0.106, M = 1.13 M_☉ → 16°/century

Could be measured within a few dozens years

The three-body problem

3 bodies → the problem is no more analyticaly tractable

Simplification: 2 bodies in orbit around their common CM + 3rd body = point source **Restricted circular 3-body problem**

Allows to tackle the motion of moons, Trojans, ring particules ...

Motions are studied within a **synodic** coordinates system **=** centered on the barycenter of M1-M2, in co-rotation with them, and with their distance as unit of distance

Only 1 constant of the motion = Jacobi constant (or Jacobi integral)

$$C_{J} = n^{2}(x^{2} + y^{2}) + 2\left(\frac{Gm_{1}}{r_{1}} + \frac{Gm_{2}}{r_{2}}\right) - v^{2}$$

Centrifugal and gravitational potential energy

By nulling v^2 for a given C_J are obtained *zero-velocity curves* that delimit the area allowed for the motion of the particule

5 equilibrium points = Lagrangian points

The points L_1 , L_2 et L_3 are unstables. L_4 et L_5 are stables for $m_1/m_2 \ge 27$

Trojans: Libration around the points L4 et L5

« Tadpole » and « horseshoe » orbits

Tadpole orbit: Jupiter's Trojans (more than 2000!)

Also known for Uranus, Neptune, Mars, and the Earth

Earth's Trojan

2010 TK₇ : a 300m-size asteroid librating around the Earth's L₄ point!

Horseshoe orbits: the Janus-Epimetheus example

Circumbinary orbits: about 30 known so far

Kepler-16A and B : 1 K-type and 1 M-type star in a 41d circular orbit

Kepler-16(AB)b:

A Saturn-mass planet in a 229d orbit around the binary

Other examples: Kepler-35, 38, 47, ...

The Hill radius R_H

Limit distance beyond which the particule can no more remain in orbit around m_2 . It corresponds to the distance m_2 -L₁

$$R_{H} = \left(\frac{m_{2}}{3(m_{1} + m_{2})}\right)^{1/3} a$$

Practically, a planetocentric orbit is stable if $R \ll R_H$. The maximum distance for a stable orbit is larger is the orbit is *retrograde*.

х

28

No analytical solution \rightarrow numerical integration of the equations of motion is the general approach

$$\ddot{\mathbf{r}}_i = -G\sum_{j=1, j\neq i}^{j=N} m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}.$$

Practically, **symplectic integrators** are often used, i.e. algorithms integrating at each step the Hamilton equations while ensuring the conversation of key quantities like energy.

$$\dot{p} = -rac{\partial H}{\partial q} \quad ext{and} \quad \dot{q} = rac{\partial H}{\partial p}$$

H = Hamiltonian, which corresponds to total energy of the system.
p and q are canonical coordinates

Secular evolution

Assumption: interactions within orbits can be averaged and we study the evolution of the averaged orbits = **secular evolution**

Correlated variations of *e* and *i*. Exchange of angular momentum

Resonances

Regular, periodic, gravitational influence between 2 or more bodies due to some of their orbital parameters being related by an integer ratio

Ex: orbital resonances (Galilean moons) spin-orbit resonance (Moon)

Orbits do not average anymore, each orbit matters

Analogy: forced harmonic oscillator

$$m\frac{d^{2}x}{dt^{2}} + m\omega_{o}^{2}x = F_{f}\cos\omega_{f}t$$

Si $\omega_{f}\neq\omega_{o}$

$$x = \frac{F_{f}}{m(\omega_{o}^{2} - \omega_{f}^{2})}\cos\omega_{f}t + C_{1}\cos\omega_{o}t + C_{2}\sin\omega_{o}t$$

Si $\omega_{f}=\omega_{o}$

$$x = \frac{F_{f}}{2m\omega_{o}}t\cos\omega_{o}t + C_{1}\cos\omega_{o}t + C_{2}\sin\omega_{o}t$$

Cumulative effects do not only make possible exchange of
angular momentum but also of orbital energy

Orbital resonances

Consider two planets in circular coplanar orbits with

$$\frac{n_2}{n_1} \approx \frac{p}{p+q}$$

with $n_i = 2\pi/P_i$ is the mean motion, and *p* and *q* are two integers.

If conjunction at t = 0, next conjunction when $n_1t - n_2t = 2\pi$ So the time difference betwen 2 conjunctions is

$$\Delta T = \frac{2\pi}{n_1 - n_2} = \frac{2\pi}{n_1 \frac{q}{p + q}} = \frac{p + q}{q} P_1$$

And thus $q\Delta T = (p+q)P_1 = pP_2$

Each *q*-th conjunction occurs at the same longitude. q = resonance order

Orbital resonances

If the outer planet has $e_2 \neq 0$ and $\dot{\varpi}_2 \neq 0$, resonance if

$$\frac{n_2 - \dot{\varpi}_2}{n_1 - \dot{\varpi}_2} = \frac{p}{p+q}$$

In this case, we have: $(p+q)n_2 - pn_1 - q\dot{\varpi}_2 = 0$

Each *q*-th conjonction takes place at the same true anomaly for the outer planet, but it does not correspond anymore to the same longitude, i.e. to the same point in an inertial system.

The commensurability of orbital periods does not automatically mean true orbital resonance (precession). 33

Effect of resonances: stabilization

ex: Jupiter-Io-Europa-Ganymede

$$\begin{split} \lambda_I &- 2\lambda_E + \overline{\omega}_I = 0^\circ, \\ n_I &- 2n_E + \dot{\overline{\omega}}_I = 0, \end{split} \qquad \begin{aligned} \lambda_I &- 2\lambda_E + \overline{\omega}_E = 180^\circ, \\ n_I &- 2n_E + \dot{\overline{\omega}}_E = 0, \end{aligned}$$

Laplace's relationships:

$$\phi_L = \lambda_I - 3\lambda_E + 2\lambda_G = 180^\circ,$$
$$n_I - 3n_E + 2n_G = 0$$

$$\lambda_E - 2\lambda_G + \overline{\omega}_E = 0^\circ,$$

$$n_E - 2n_G + \overline{\omega}_E = 0$$

Ever triple conjunction

Libration of ϕ_L with a period of 2017 days and with an amplitude of 0.064°

Maintains the eccentricity of lo (0.004) and Europa (0.01)

Orbital resonances

Effect of resonances : destabilization

ex: Kirkwood's gaps

Kozai mechanism

Star with planet, + a star or a massive planet on a outer and very inclined orbit $(>39^{\circ})$

Coupled oscillation of *e* and *i* of the inner planet

Tidal effects

Are assumed a star and a close-in planet.

The star distorts the planet, and reciprocally \rightarrow tidal bulges

The two bodies have a non-zero viscosity → friction forces → heating and phase shift of the bulges

Here : P_{rot,*} < P_{orb,p}

Tidal effects

with $2\varepsilon = Q^{-1}$

where *Q* = tidal dissipation function

= maximum energy stored in the tidal deformation over the tidal energy dissipated as heat per cycle

- = 10 500 for terrestrial bodies
- $> 10^5$ for giant planets and stars (much more fluid)

Note: Q depends on the orbital period too

Tidal effects

The tidal deformation of the star results in a torque that accelerates the planet and slows down the stellar rotation (in the case of the Earth-Moon system)

- → Transfert of energy and angular momentum between the two bodies
- \rightarrow Here P_{rot,*} and P_{orb,p} increase, in the opposite case they decrease
- → Variation of $P_{rot,*}$, $P_{rot,p}$, I_* , I_p , a, e

→ Final outcome: complete equilibrium (P_{rot,*} = P_{rot,p} = P_{orb}; I_{*} = I_p; e = 0) or tidal disruption (hot Jupiters) or damped orbital recession (Moon)
³⁹

Tidal evolution of hot Jupiters (P_{orb} < P_{rot,*})

Tidal evolution of hot Jupiters (P_{orb} < P_{rot,*})

- Very fast evolution towards P_{orb} = P_{rot,p} in ~1Ma
 → spin-orbit resonance (tidal locking)
- 2. Much slower circularization of the orbit within a timescale of ~1Ga

3. **Continuous shrinking of the orbit** due to tides raised by the planet on the star (making the star rotate faster)

4. P_{rot,*} is modified by tidal effects (acceleration), but also by stellar wind (magnetic braking), so **complete equilibrium is never reached** and da/dt < 0

Final outcome: tidal disruption

Rocky planets? Evolution is much slower because of much smaller tides on the star + much less energy dissipated per cycle (e.g. Mercury with e=0.21)

Tidal disruption

The planet migrates until reaching its **Roche limit**, distance for which the stellar gravity and the centrifugal forces surpass its internal cohesion forces

$$dpprox 2.44 R_{
m M} iggl(rac{
ho_M}{
ho_m} iggr)^{1/3}$$

Shoemaker-Levy 9 comet (17/05/1994)

If differentiated planet: only the outer layers are torn apart \rightarrow chtonian planet

Tidal heating

Important for energy budget of short-period planets

References

M. Perryman Cambridge University Press Chapters 2, 3, 6 & 10

S. Seager University of Arizona Press Chapters 2, 10 & 11

I. de Pater & J. J. Lissauer Cambridge University Press Chapter 2

C. D. Murray & S. F. Dermott Cambridge University Press