Introduction to exoplanetology

Michaël Gillon (<u>michael.gillon@uliege.be</u>) Olivier Absil (<u>olivier.absil@uliege.be</u>)

I. IV/V. Introduction to exoplanetology

Transiting exoplanets

Michaël Gillon michael.gillon@ulige.be

Master in Space Sciences – Academic year 2021-2022

Algol: the Devil's star

Perseus constellation - V=2.1- 92 light-years Beta Per A (B8V)+ B (K0IV) in mutual orbit with P = 2.85 days (0.06 au) Beta Per C (A5V) at 2.7 au (680 days)

Its variability could have been known by the Egyptians more than 3000 years ago. 1783: John Goodricke proposed that it is due to eclipses.

End of 19th century: radial velocities show the multiple nature of the star.

On the importance of eclipsing binaries. I

Recall L3:
$$K_{1,2} = M_{2,1} \sin i (M_2 + M_1)^{-2/3} P^{-1/3} (1 - e^2)^{-1/2} C$$

with C = constant

If RVs are measured for both stars (SB2), K_1 and K_2 are known.

If *i* is known, the stellar masses can be directly measured!

Assumption: 2 spherical bodies

Longitude of ascending node $\boldsymbol{\Omega}$ unknown

- \rightarrow we assume Ω =180 deg
- \rightarrow X-axis is the reference axis.

$$r = \frac{a(1 - e^2)}{1 + e\cos f}$$

$$X = -r\cos(\omega + f)$$

$$Y = -r\sin(\omega + f)\cos i$$

$$Z = r\sin(\omega + f)\sin i$$

$$r_{sky} = r\sqrt{1 - \sin^2(\omega + f)\sin^2 i}$$

 r_{skv} minimal when X=0, at the inferior (transit) and superior (occultation) conjunctions

$$f_{\rm tra} = +\frac{\pi}{2} - \omega, \quad f_{\rm occ} = -\frac{\pi}{2} - \omega,$$

The eclipses **impact parameters** = r_{sky}/R_1 are

$$b_{\text{tra}} = \frac{a\cos i}{R_{\star}} \left(\frac{1-e^2}{1+e\sin\omega}\right) \qquad \qquad b_{\text{occ}} = \frac{a\cos i}{R_{\star}} \left(\frac{1-e^2}{1-e\sin\omega}\right)$$

If $b \leq 1 - (R_2/R_1)$: full eclipse

If $1 - (R_2/R_1) < b < (1 + R_2/R_1)$: grazing eclipse

7

Amplitudes (uniform disks) :

Transit:
$$\delta = \frac{F_{S,1}R_1^2}{F_{S,1}R_1^2 + F_{S,2}R_2^2} \left(\frac{R_2}{R_1}\right)^2$$

If $F_{S,2}R_2^2 << F_{S,1}R_1^2 \longrightarrow \delta_{tr} = \left(\frac{R_2}{R_1}\right)^2$ Exoplanet + star

Occultation:
$$\delta = \frac{F_{S,2}R_2^2}{F_{S,1}R_1^2 + F_{S,2}R_2^2}$$

If $F_{S,2}R_2^2 << F_{S,1}R_1^2 \longrightarrow \delta_{oc} = \frac{F_{S,2}}{F_{S,1}} \left(\frac{R_2}{R_1}\right)^2$ Exoplanet + star

Transiting planet: if δ_{tr} and δ_{oc} measured, and $F_{S,1}$ known $\rightarrow F_{S,2}$

Emission spectrum of an exoplanet without having to spatially resolve it

Limb darkening

T_{LO}

 $\Gamma_{\rm H^{\prime}}$

A

•0

Optical depth

$$\tau_{v}(x) = -\int_{\infty}^{x} \rho(s) \kappa_{v} ds$$

Emission surface: optical depth $\tau = 1$ ($\tau > 1 \rightarrow$ opaque)

Disk center: emission of deeper hotter layers than for the limb \rightarrow l_s is larger

Surface intensity $I_{\mbox{\scriptsize S}}$ depends on the angle of incidence

Analytical model: $\frac{I(\eta)}{I(0)}$

$$\frac{I(\psi)}{I(0)} = 1 + \sum_{k=1}^{N} A_k (1 - \cos(\psi))^k$$

Limb-darkening decreases with λ because

$$\frac{dB_{\lambda}}{dT} \approx \frac{2ck}{\lambda^4}$$

Limb darkening

Consequence for transits: the drop of brightness varies with λ . δ_{tr} is larger than k² near the center, smaller near the limb

Transit = 1D cartography of the stellar disk

10

Geometric probability of eclipse

$$p_{\text{tra}} = \left(\frac{R_{\star} \pm R_p}{a}\right) \left(\frac{1 + e \sin \omega}{1 - e^2}\right)$$
$$p_{\text{occ}} = \left(\frac{R_{\star} \pm R_p}{a}\right) \left(\frac{1 - e \sin \omega}{1 - e^2}\right)$$

$$p_{\rm tra} = p_{
m occ} = \frac{R_{\star}}{a} \approx 0.005 \left(\frac{R_{\star}}{R_{\odot}}\right) \left(\frac{a}{1 \,\,{\rm AU}}\right)^{-1}$$

On the importance of eclipsing binaries. II

If we have the RVs of both stars (SB2), we know K_1 and K_2

 \rightarrow We know $M_1 \sin i^3$ and $M_2 \sin i^3$

If eclipses, *i* is known \rightarrow the mass is determined for both stars

If a measurement or an estimate of T_{eff} is available for both stars, the light curves analysis will provide also R_1/a and R_2/a *a* can be computed from P and $M_1 + M_2$, so R_1 and R_2 can be determined

Model-independent determination of stellar masses and radii!

Searching for exoplanet transits?

Probability? 0.5% for an Earth analog, 0.1% for Jupiter, ~10% for a hot Jupiter

Amplitude? ~1% for a gas giant planet ~0.01% for a terrestrial planet

Requires measuring the evolution of the brightness of thousands of stars (*time-series photometry*) with a precision of 0.1% (0.001%) to detect Jupiter-sized (Earth-sized) planets.

Other possible strategy: search for the transits of RV planets

2000: first detection

Planet HD209458b first detected by radial velocity

0.7 M_{Jupiter}, 1.35 R_{Jupiter}

The years 2000: first transit surveys

OGLE-III

From 2001 Varsaw 1.3m telescope 1.3m First exoplanet discovered by transit in 2003

TrES

3 telescopes of 10cm. Field of view of 5.7° x5.7° Multi-longitudes: California, Arizona, Canary Islands First detection in 2004

XO

2 x 11cm lenses. Field of view of 7.2° x7.2° Hawaii First detection in 2006

HATNet

6 x 11cm lenses. Field of view 8°x8° Multi-longitudes : Hawaii, Arizona First detection in 2006 Now in Southern hemisphere too 8

5

5

WASP: Wide-Angle Search for Planets

UK universities + foreign collaborators (including ULiege) First detection in 2007. Lenses of 11cm + CCD 8 lenses per station. Field of view 7.8° x7.8 per lens Stations: Canary Islands + South Africa

2007 : CoRoT, first space transit survey

- France (CNES) + ESA + several countries (inc. Belgium)
- Objectives: study of stars (asteroseismology) and transit search
- Telescope of 27 cm Field of view of 3.5 deg²
- Geocentric orbit
- Launch on 27 December 2006
- Fatal breakdown on 2 November 2012
- More than 20 detected planets, including
- CoRoT-7b, the first transiting super-Earth
 - Unicorn constellation
 - ~5 M_{Earth} , ~1.7 R_{Earth}
 - Orbital period of 20.5 hrs!

The first transiting super-Earth

Corot-7b best-fit transit model

The NASA Kepler mission

- USA (NASA)
- Objective: search for terrestrial exoplanets
- Telescope of 95cm Field of view of 115 deg^2
- Heliocentric orbit
- Launch on 7 March 2009.
- End of nominal mission on 15 August 2013.
- More than 2500 detected planets
- More than 3000 candidates still to be confirmed

The NASA Kepler mission

The NASA Kepler mission

42 CCDs of 2200x1024 pixels Observation of 0.28% of the sky Heliocentric *Earth-trailing* orbit

Kepler: more than 4000 candidates

Radius - Period Distribution

2

Kepler: multiple transiting systems

Example : Kepler-11, solar-type star 2000 light-years away 6 transiting planets, from 2 to 4.5 R_{Earth} and from 10 to 120 days period Mass measurements from their gravitational interactions (TTVs).

Kepler-16b: first circumbinary planet

Binary period = 41 days

Planet's period = 230 days

1.1 M_{Saturn} , 0.9 R_{Saturn}

Kepler: Earths

Kepler-22b: first transiting super-Earth in the habitable zone of its host star

Borucki et al. (2012)

 $<\!125~M_{Earth}$

 $\rm 2.4 \ R_{Earth}$

Kepler: Mercuries!

Barclay et al. (2013)

The intriguing Kepler-42 multiple system

Muirhead et al. (2012)

Star of <0.2 R_{sun} 125 light-years away

Kepler: ultra-high precision photometry

29

Kepler reloaded: the K2 mission

In May 2013, Kepler lost the second of four gyroscope-like reaction wheels...

Kepler: summary of results (03/2021)

- 2820 confirmed planets (by RV or TTV ou dynamical+statistics)
- Smaller planet= Kepler-37b, 0.3 R_{Earth} (Barclay et al. 2013)
- 10 circumbinary planets
- 5 potentially habitable planets (http://phl.upr.edu/projects/habitable-exoplanets-catalog)
- Thorough characterization of several 'hot Jupiters'
- 3255 candidates still to be confirmed. Statistical analysis suggests that 90% = planets (Fressin et al. 2013)

~50% of solar-type stars have a planet with P<88 days (Mercury)

- « Earths » (<1.25 R_{earth}): 17%
- « Super-Earths » (between 1.25 and 2 R_{earth}): 20%
- « Mini-Neptunes » (between 2 and 4 R_{earth}): 20%
- « Big Neptunes » and larger (>4 R_{earths}): 4%

Kepler: summary of results (03/2018)

- Red dwarfs (Teff < 4000K): 0.9 planet / star with P<50 days et R < 4 R_{Earth} .
- **0.15 Earth-sized planet in the habitable zone per star** (*Dressing et al. 2013*)

Modeling of transit light curve

Modeling of a transit light curve

1. A set of initial values is assumed for (e.g.)

P = orbital period (fixed if only one transit)

e = eccentricity

 ω = argument of periastron

T_{tr} = time of inferior conjunction (mid-transit)

 $b = a \cos R_* = impact parameter (if circular orbit)$

W = transit duration T_{IV} -T_I

 $k = R_p/R_* =$ square root of transit depth

2. The scale parameter a/R* is computed via

$$W = \frac{P}{\pi} \left[\sin^{-1} \left[\frac{R_{\star}}{a} \frac{\sqrt{(1+k)^2 - b^2}}{\sin i} \right] \right] \frac{\sqrt{1-e^2}}{1+e\sin\omega}$$
$$\frac{W\pi}{P} \frac{1+e\sin\omega}{\sqrt{1-e^2}} = \sin^{-1} \left[\frac{R_{\star}}{a} \frac{\sqrt{(1+k)^2 - b^2}}{\sin i} \right]$$

$$\frac{\sqrt{(1+k)^2 - b^2}}{\sin X} = \frac{a}{R_*} \sqrt{1 - \cos^2 i}$$
$$\frac{(1+k)^2 - b^2}{\sin^2 X} + b^2 = \left(\frac{a}{R_*}\right)^2$$

Modeling of a transit light curve

3. The **stellar density** is inferred from Kepler's third law (assuming $M_p \ll M_*$)

$$a^{3} = \left(\frac{P^{2}GM_{*}}{4\pi^{2}}\right) \qquad \Longrightarrow \qquad \frac{a^{3}}{R^{3}} = \left(\frac{P^{2}GM_{*}}{4\pi^{2}}\right)\frac{1}{R_{*}^{3}} = \left(\frac{P^{2}G}{3\pi}\right)\frac{\rho_{*}}{\rho_{sun}}$$

High-precision transit light curve -> strong constraint on stellar properties
Modeling of a transit light curve

4. For each photometric measurement, the position of the planet relative to the star is computed, and from that the fraction of stellar disk occulted by the planetary disk (assuming spherical shapes for both bodies)

$$f_{tr} = \pi/2 - \omega \qquad E_{tr} = 2 \tan^{-1} \left(\sqrt{\frac{1-e}{1+e}} \tan\left(\frac{f_{tr}}{2}\right) \right) \qquad M_{tr} = E_{tr} - e \sin E_{tr}$$
$$T_{periastron} = T_{tr} - M_{tr} * P$$
$$t \Rightarrow M \Rightarrow E \Rightarrow f \Rightarrow \frac{r}{R_*} = \frac{a}{R_*} \frac{(1-e^2)}{1+e\cos f}$$
$$\Rightarrow \frac{r_{sky}}{R_*} = \frac{r}{R_*} \sqrt{1-\sin^2(\omega+f)\sin^2 i}$$

Modeling of a transit light curve

Computation of the drop of brightness with an algorithm adapted to the selected limb-darkening law (e.g. Mandel et Agol 2002).

Physical parameters

Transit provide R_p/R_* , a/R_* , and ρ_* . How to obtain R_* , R_p and a?

Option 1: independent spectroscopic analysis provides T_{eff} , [Fe/H], and log g. Analysis based on stellar evolution models gives M_* , and R_* is computed from $M_* + \rho_*$ from transits.

Option 2: after (or during) the analysis of the transits, ρ_* is added as input in the determination of M_{*} from stellar evolution models.

Option 3: same as option 1 and 2, except that the stellar evolution models are replaced by empirical laws M_* (Teff, [Fe/H], logg) or M_* (Teff, [Fe/H], ρ_*) calibrated on eclipsing binaries (Torres et al. 2009, Enoch et al. 2012).

Option 4: determination of R_{*} by interferometry or with luminosity + parallax + T_{eff} (nearby star) $\rightarrow \rho_*$ from the transits is then used to determine M_{*}

Option 5: if ρ_* is poorly constrained by transits (low SNR, small planet), *a priori* values are assumed for M_* and $R_{*,}$ or a measurement of ρ_* obtained by asteroseismology is used.

Global Bayesian analysis

Practically, it is always preferable to use all the available information and data to maximize the constraints and to identify the most consistent solutions ... or to reveal a consistency problem.

A posteriori probability distributions for M_{*}, R_{*}, M_p, R_p, *i*, *a*, *e*, etc...

Example: Markov Chains Monte Carlo (MCMC) method

Other effects affecting the data

Correlation of the flux with airmass (differential extinction), position on the chip, PSF geometry, background, chip temperature and gain, stellar variability, etc → global modeling of systematic effects and eclipses

Red noise

Low-frequency (<< lower than the sampling frequency) noise = RED NOISE₄₂

Taking into account the red noise

Several possible approachs.

- 1. Aggressive filtering of the light curves before analysis until reaching a fully white noise
- Ex: SYSREM (Tamuz et al. 2005)

Problem: « cleaning » the light curves = modify the signal \otimes

- 2. « Prayer bead » method = residual permutation (Jenkins et al. 2002)
- 3. Rescaling of the photometric errors (Winn et al. 2007)

Binning of the data to several time bins Computation of the standard deviation of the residuals Comparaison with the deviation expected in case of white noise (N^{-1/2}) The largest ratio gives the corrective factor to apply to the errors

4. Modeling of the red noise: wavelets (Carter & Winn 2009), **gaussian processes** (Danielski et al. 2013), **etc.**

Open source transit analysis programs

- Transit Analysis Package Gazack et al. 2012
- PyTransit *Parviainem 2015*
- ExoFAST Eastman 2013, 2019
- AstroImageJ Collins et al. 2017
- Exoplanet Foreman-Mc Key 2021
- Transit Light Curve Modeller *Smith et al. 2017*
- Allesfitter Gunther & Daylan 2018
- Juliet *Espinoza et al 2018, 2019*
- Pyaneti Barragan et al. 2019

etc...

Transits: a success story

Detections Per Year

11 Mar 2022 exoplanetarchive.ipac.caltech.edu

Basic strategy:

- 1. Light curves for hundreds of thousands of stars
- 2. Search for periodic box-shape signals consistent with transits
- 3. Follow-up of the selected candidates to confirm/reject the planetary hypothesis
- 4. Statistical analysis of ambiguous candidates (Kepler)

Main problem: transit-like signals can have other causes than planets!

Background eclipsing binary blended with the target

Discrimination: higher-resolution photometry

49

Discrimination: high-precision photometry and/or Doppler spectroscopy

Transit of a planetary size object: ultracool dwarf (verylow-mass star or brown dwarf)

c.g. When bob a brown dwarr of of Mjup

Discrimination: Doppler spectroscopy + (occultation photometry)

51

What if no RV detection?

1/ Hot and/or fast-rotating star

Upper limit on the planet's mass from RVs e.g. WASP-33b: $M_p < 4.1 M_{jup}$ on a 1.2d orbit around an A5-type star (Collier-Cameron et al. 2010)

2/ Very-low-mass planets (e.g. Kepler, TRAPPIST-1)

Multiple transiting system: constraints on the masses from the transit timing variations (**TTVs**) due to planet-planet interactions (*Holman & Murray 2005; Agol et al. 2005*)

Modeling of the light curves with planet and eclipsing binary models, and statistical inferences from models comparison. e.g. **Blender** (*Torres et al. 2010*), **TRICERATOPS** (*Giacalone et al. 2020*)

The TTV method

The TTV method: TRAPPIST-1

Amplitude:
$$\Delta RV \approx \frac{R_p^2}{R_*^2} \sqrt{1-b^2} V_* \sin I_*$$

Geometry: depends on the angle λ between the projections on the sky plane of the stellar spin axis and the planet's orbital axis.

Gaudi & Winn (2006)

First detection for an exoplanet: HD209458b in 2000

Traces of orbital realignement by tidal effects?

Studying the atmospheres of transiting planets

Transit transmission spectrophotometry

Signal amplitude? (Seager & Sasselov 2000) At the λ of a strong atomic or molecular transition, the effective radius of the planets increases of some (N_H~5) scale heights H = kT/µg

$$\Delta \delta = \frac{\pi (R_p + N_H H)^2}{\pi R_\star^2} - \frac{\pi R_p^2}{\pi R_\star^2} \approx 2N_H \delta \left(\frac{H}{R_p}\right)$$

Hot Jupiter: ~100ppm, Earth+Sun: ~1ppm

Transit transmission spectrophotometry

Rayleigh scattering is λ -dependent and stronger at shorter wavelengths. It concerns the molecules and condensates that are small compared to λ .

For bigger particules (compared to λ) \rightarrow Mie scattering, less λ -dependent.

Depending on the atmosphere composition, the extent of the cloud cover, and the composition and altitude of the clouds, these two kinds of scattering impact more or less strongly the transmission spectra.

Transit transmission spectrophotometry

Practically:

Broadband observation of several transits at different wavelengths BUT: impact of stellar variability; low spectral resolution

Mono- (space) or multi-object (ground) time-series spectroscopy,

or

→ wide-slit spectroscopy

Integral Field Unit (IFU)

Delrez et al. (2013)

Atomic sodium in the atmosphere of HD209458b

Instrument: STIS spectrograph aboard HST

Objective: to detect the Na I (5890,5986Å) resonance doublet signal, basing on theoretical predictions of Seager & Sasselov (2000)

~4 sigmas detection
Signal 3 times fainter than expected
Depletion of Na I? Competition between Na and Na₂S? Then only 1% of Na should be in atomic form...
High-altitude clouds?

Atmospheric escape for HD209458b

Instrument: STIS spectrograph aboard HST

Objective: To detect the H Lyman- α (121.6 nm) line.

~4 sigmas detection

Effective radius of 4.3 R_{jup}!

Exosphere forming a comet-like coma around the planet

Mass loss is negligible (~0.1% over the life of the star)

Atmospheric escape for HD209458b

Water in the atmosphere of HD209458b?

Instrument: STIS spectrograph aboard HST

Objective: low-resolution spectrum between 300 and 1000nm

10000

67

Water in the atmosphere of HD189733b ?

Instrument: IRAC camera aboard Spitzer

Objective: detection of H₂0 that should produce $\Delta(dF_{5.8\mu m} - dF_{3.6\mu m})$ between 150 and 400ppm

Only H₂O explains the measurements

R_p larger in the optical? If so: clouds? Aerosols? Effect of spots?

But independent analysis of the same data did not confirm the results...

Methane in the atmosphere of HD189733b ?

Instrument: NICMOS spectrograph aboard HST

Objective: low-resolution spectrum in the near-IR

Detection of H₂O and CH₄

CO should be the main carbon molecule when T>1200K

- ➔ Chemical gradient?
- ➔ Photochemical mechanism?

Light curves are « detrended » using out-of-transit data and an arbitrary function of 5 external parameters.

➔ Errors ~50ppm. Realistic?

Spectrum dominated by Rayleigh scattering (dust) Spots complicate the interpretation NICMOS systematic effects were strongly underestimated.

The actual transmission spectrum of HD189733b

Mc Cullough et al. (2014)

Spectrum dominated by Rayleigh scattering (high-altitude haze) and/or by unocculted star spots Na, K, and water signatures are detected

Some more recent results...

Comprehensive survey of ten planets shows a continuum of clear to cloudy atmospheres on hot Jupiters...

TiO and H_2O in the very hot ($T_{eq} \sim 1900K$) giant planet WASP-19b

Sedagahti et al. 2017

Studying small planets? Targetting small stars!

GJ436b: 4.1 R_{earth} + 0.46 R_{sun}

Water in the atmosphere of the bloated hot Neptune HAT-P-26b

18.6 M_{earth} , 6.3 R_{earth} + 0.8 R_{sun} K-dwarf

Water in the atmosphere of the habitable zone super-Earth K2-18b

 $8.5 M_{earth,} 2.3 R_{earth} + 0.5 R_{sun} M$ -dwarf

A giant comet-like cloud of hydrogen escaping a hot Neptune

Instrument: STIS spectrograph aboard HST

Objective: measure the transit in H I Ly- α line (121.6nm)

Ehrenreich et al. (2016)

Transit depth: 56% instead of 0.7%!

Transit transmission spectroscopy: stellar issue?

High-resolution transit spectroscopy

Principles:

transit \rightarrow absorption of the stellar light by the atmosphere's molecular lines (e.g. CO).

During the transit, the lines of the star and of the planet move quickly in opposite direction

Method: cross-correlation with a synthetic transmission spectrum of CO (or other molecules)

Requires very high signal-to-noise ratio and resolution in the IR. (e.g. CRIRES spectrograph on the VLT, R~100,000)

Method's outcomes:

Orbital speed of the planet -> stellar mass (SB2). Abundance of CO in the limb of the planet Shift in RV relative to the star: wind

High-resolution transit spectroscopy

<u>Thermal emission measurement: measurement of the brightness</u> <u>temperature of the planet's dayside</u>

Constraint on the day-night heat distribution and on the albedo

$$T_{eq, day} = T_* \left(\frac{R_*}{a}\right)^{1/2} [f(1-A_{\rm B})]^{1/4},$$

f = redistribution factor

= 1/4 if incident energy is distributed uniformly by the atmosphere

= 2/3 if it is directly reemitted by the dayside

 $A_B = Bond albedo$

T_{eq,day} can reach 3000K for a hot Jupiter!

Corresponding occultation depth in the near-IR: ~1/1000th

Bond albedo A_B = fraction of incident energy reflected back to space. A_B between 0 and 1

Geometrical albedo $A_g(\lambda)$ = ratio between the flux of the light reflected by a planet seen at phase angle α =0 and the flux of the light reflected by a Lambertian disk of same angular size.

Lambertian surface = fully reflecting surface, with an isotropic emission surface intensity (e.g. a white sheet).

 $A_g(\lambda)$ can be > 1 ! e.g. $A_g(optical)$ for Enceladus = 1.38 Depends on the scattering properties of the surface material.

Brightness temperature $T_b(\lambda)$ = temperature of a black body for which the flux at the wavelength λ would match the measured flux.

First detection: 2005 – TrES-1b – *Charbonneau et al. (2005)* **Instrument :** Spitzer/IRAC at 4.5 and 8 microns

 $dF_{4.5\mu m} = 660 \pm 130 \text{ ppm}$ $dF_{8\mu m} = 2250 \pm 360 \text{ ppm}$

 $T_{b,4.5\mu m} = 1010 \pm 60 \text{ K}$ $T_{b,8\mu m} = 1230 \pm 110 \text{ K}$

$$\Psi$$

T_{eq,jour} = 1060 ± 50 k

→ $A_B = 0.31 \pm 0.14$ for f=1/4

Of course, a planet is not a black body, and f is unknown...

First detection: 2005 – TrES-1b – *Charbonneau et al. (2005)* Instrumen : Spitzer/IRAC at 4.5 and 8 microns

Model for 51 Peg b (Sudarsky et al. 2003) adapted to TrES-1b

First detection: 2005 - HD209458b – Deming et al. (2005) Instrument: Spitzer/MIPS at 24 microns

$$dF_{24\mu m} = 260 \pm 50 \text{ ppm}$$

$$T_{b,24\mu m} = 1130 \pm 150 \text{ K}$$

The important contribution of the Spitzer Space Telescope

- Launch in 2003
- Cryogenized to 5.5K (Beryllium mirror) by liquid He until May 2009
- 85 cm aperture
- Heliocentric orbit, receding from Earth (0.1 au/yr)
- 3 instruments:
 - ◆ IRAC camera (3.6, 4.5, 5.8, and 8µm)
 - ◆ IRS spectrograph (5 & 40 μm), low (R~60-130) and medium (R~600) resolution
 - ♦ MIPS camera (24, 70, 160 µm)

The large contribution of Spitzer

Deming & Seager (2010); Crossfield et al. (2012)

88

The complementary contribution of ground-based telescopes: the near-IR (JHK)

The complementary contribution of ground-based telescopes the near-IR (JHK) = SED peak of hot Jupiters

Madhusudhan et al. (2011)

HD 189733b

Some hot Jupiters have a stratosphere

WASP-33b

High CO abundance, deficiency in CH₄ CH₄/CO ratio at least 10⁵ times smaller than expected... Chemical disequilibrium? (vertical mixing? methane polymerisation?)

The first detection of the light of a 'super-Earth'

Demory et al. (2012)

 $\begin{array}{l} 131\pm28 \ \text{ppm}-\text{T}_{\text{brightness}} = 2350\pm300 \ \text{K}\\ \text{Spitzer IRAC} - 4.5 \mu\text{m} - 4 \ \text{observed occultations}\\ 2 \ \text{R}_{\text{earth}} + \text{G8-type star at } 12 \text{pc} - \text{V=6}, \ \text{K=4}\\ P < 18 \text{hrs!} \end{array}$

The variable emission of the super-Earth 55 Cnc e

Io-like volcanism?

Tore of circumstellar material?

Phase curve

Longitudinal map = constraint on the heat transfert and albedo

Phase curve

Longitudinal map = constraint on the heat transfert and albedo

Degeneracy heat transfert/albedo raised by phase curve in the optical (albedo) & IR (heat transfert).

HD189733b – Spitzer photometry at 8µm Efficient distribution & hot spot shifted to the East

WASP-12b – Spitzer photometry at 3.6/4.5µm Inefficient distribution and non-zero albedo

Kepler-7b – Kepler photometry in the optical High albedo for a hot Jupiter ($A_g \sim 0.3$)

Phase curve and 1D map: example

Hot Jupiter Kepler-7 : 0.45 M_J, 1.6 R_J, T_{eq} = 1600K Occultation not detected by Spitzer \rightarrow reflected light A_g = 0.35 ± 0.02

Shape of the phase curve indicates a variation of the reflecting surface with longitude \rightarrow clouds (silicates?)

Phase curve and 1D map: super-Earth!

55 Cancri e: 8 M_{Earth} , 2 R_{Earth} , on a 18hr orbit around a nearby solar-type star Day side is heated up to 3000K!

Night side is 1300K cooler

This large thermal gradient is consistent with an atmosphereless rocky planet Phase shift: lava flows on the dayside?

Phase curve + eclipse scanning

+

2D-map of exoplanets!

HD189733b

Global analysis of Spitzer data e < 0.0081 (at 2- σ) Hot spot at 24 \pm 11 ° E, 17 \pm 10 ° N

> de Witt et al. (2012) See also Majeau et al. (2012) 100

82 0 484 0 486 0 488 0 49 0 51 0 512 0 514 0 516 0 5

0.49

0.512 0.514 0.516 0.51

High-resolution phase spectroscopy

Birkby et al. (2013)

VLT/CRIRES, R=100000, 3.2 μ m Detection of H₂O at 5- σ Phase from 0.38 to 0.48, dVR_p ~75 km/s

Transiting planets: present & future

1. Detections

Next-Generation Transit Survey (NGTS) ESO Paranal – since 2016 Search for Neptunes around K- and early-M-type stars with V<13 12 telescopes of 20cm Field of view of 3°x3° by telescope, 108 deg² in total

CHaracterising ExOPlanets Satellite (CHEOPS) Switzerland/ESA and several countries (Belgium) Telescope of 30cm in low geocentric orbit Launched in 2019, operations ongoing. Search for transits of RV planets Caracterisation of planets transiting nearby stars

Transiting planets: present & future

1. Detections

Transiting Exoplanet Survey Satellite (TESS) MIT/NASA – launched in 2018 Orbit in 1:2 resonance with the Moon Survey of 2 years on all stars with V<12 ~27 days per target, more for ecliptic poles Several lenses of ~13cm Detection of super-Earths and Neptunes around nearby FGKM-types stars.

PLAnetary Transits and Oscillations (PLATO) ESA – ~2025 L2 orbit Survey of 6 ans covering ~50% of the sky V magnitude from 4 to 16 85000 stars with V<11 34 telescopes – field of 2250 deg² Detection of pot. habitable Earths in front of nearby solar-type stars

Transiting planets: the future

2. Atmospheric study

ARIEL ESA 1.1x0.7m 0.5 to 7.8µm 2028

JWST NASA+ESA/CSA 6.5m 0.6 to 23µm 2021

E-ELT ESO – 39m Visible + IR ~2025

GMT USA – 25m Visible + IR ~2025

GJ436b : first transiting « Neptune » Transit detected en 2007 with an amateur 60cm telescope in the Swiss mountains (St-Luc)

MEarth: 2x8 telescopes of 40cm – Arizona + Chile – individual observations of nearby (<33pc) M-dwarfs smaller than 0.3 Rsun GJ1214b

Charbonneau et al. 2009

MEarth 2nd discovery: GJ1132b

1.6 Mearth 1.2 Rearth Teq ~500K P=1.6d Mstar = 0.18 Msun Rstar = 0.21 Rsun

Berta et al. (2015)

MEarth 3rd discovery: LHS1140b

0.994

0.992

0.990

-2

-1

0

Phased Time from Mid-Transit (hours)

1

2

-10

-20

0.0

0.5

Orbital phase

1.0

6.7 Mearth 1.4 Rearth Teq ~230K P=24.7d Mstar = 0.15 Msun Rstar = 0.19 Rsun

Dittmann et al. (2017)

113

New nearby UCDs are regularly found

Luhman-16AB Binary BD L9+T1 at 2pc (Luhman 2013) Scholtz's star: M9.5 star + T5 BD at 6pc (Scholtz 2013)

UCDs and planets

MOA-2007-BLG-192Bb (Bennett et al. 2008, Kubas et al. 2012)

 $3.3 M_{earth}$ planet at 0.66 AU away from a star(?) of 0.085 M_{sun} ~660pc

Disks are frequent around young UCDs (*Luhman et al. 2007*) Mass and size of disk are proportionnal to the mass of the central object (*Klein et al. 2003*) Planetesimal formation as frequent as for solar-type stars (*Pascussi et al. 2011*)

Models predict systems rich in short-period telluric planets (*Raymond et al. 2007; Montgomery & Laughlin 2009; Masahiro & Ida 2009*) They don't agree on the composition of the planets For brow dwarfs, tidal evolution could push the planets outward (*Bolmont et al. 2012*)

Kepler-42: Jovian-like systems frequent around UCDs?

TRAPPIST/UCDTS

Search for Planets EClipsing ULtra-cOOl Stars Network of 1m robotic telescopes ~1000 UCDs with K<12.5 Several nights per target to explore >50% of the habitable zone

ULiege + Cambridge + MIT + Birmingham + Bern

The SPECULOOS network

Simulations predict an efficient exploration of the Earth-sized regime

Simulations: 14±6 planets, with 4±2 in the habitable zone

Confirmation by the TRAPPIST prototype survey!

3 Earth-sized planets transiting a nearby M8type star Mstar = 0.08 Msun Rstar = 1.1 Rjup Teff = 2550K

Equilibrium temperatures of the planets between 200 and 400K

Nearby (12 pc) -> good targets for atmospheric study with JWST & ELTs

Confirmation by the TRAPPIST prototype survey!

TRAPPIST-1

Host star: discovered in 2000 by *Gizis et al*. V=18.8, I=14.0, J=11.3, >500 Myr 0.089±0.006 M_☉, T_{eff} = 2516±41 K, [Fe/H] = +0.04±0.08

 $0.121\pm0.003~R_{\odot}$, $0.00052\pm0.00002~L_{\odot}$

Van Grootel et al. (2018)

XMM-*Newton*: strong X-ray emission, $L_X/L_{bol} = 2 - 4 \ 10^{-4}$

Wheatley et al. (2016)

TRAPPIST-1

A first opportunity to study the atmosphere of temperate Earth-sized planets

60 transits 90 transits 30 transits 0.79 1b TRAPPIST-1 b 0.78 TRAPPIST-1 c Relative Flux , 0.77 °.76 0.75 0.74 0.73 0.70 1c 0.985 0.69 0.68 7 °.00 (^{*}H/4) 0.67 0.66 4000 b+c, H₂ rich, cloud–free (19σ) a TRAPPIST-1 b+c b, H₂ rich, cloud–free (12 σ) 0.65 c, H₂ rich, cloud–free (10σ) 3000 0.64 b+c, H₂O rich, cloud–free (4 σ) 0.86 2000 [. m.d.1000 ∆F 1d 0.85 °("H,") 2.84 0.83 -1000 0.82 10 12 0 10 12 0 0 6 6 8 -2000 Wavelength (µm) Wavelength (µm) Wavelength (µm) 1.1 1.2 1.3 1.4 Wavelength [µm] 1.5 1.6 1.7

First with HST

Barstow & Irwin (2016)

...and then with JWST, ELTs, etc

Three Earth-sized planets transiting at the same time

2016: intensive photometric follow-up from the ground

The perfect telescope for the job

Fall 2016: Spitzer cracks the system

20 days of nearly continuous observation... and 34 transits!

A very compact system

A 7-planets resonant chain

The composition and irradiation of the TRAPPIST-1 planets

Grimm et al (2018)

The harsh environment of TRAPPIST-1

X and UV flux on the planets estimated from XMM-Newton (Wheatley et al. 2016) and HST/STIS (Bourrier et al. 2017) measurements.

The harsh environment of TRAPPIST-1

Credits: NASA

TRAPPIST-1 planets: cooked during >1 Gyrs

2021: the James Webb Space Telescope

Credits: James Vaughan
2022: James Webb Space Telescope

Barstow & Irwin 2016

TESS and rocky planets around mid-type M-dwarfs

LHS3844: a rocky Earth-mass planet on a 11hr-orbit around a M4-type star at

15pc (Vanderspek et al 2018).

Spitzer phase curve suggests no atmosphere (Kreidberg et al. 2019)

LP791-18: at least 3 planets around a M6-type M-dwarf at 26.5pc, including a super-Earth at the inner edge of the habitable zone (Crossfield et al. 2019)

M. Perryman Cambridge University Press Chapter 6

S. B. Howell Cambridge University Press Chapters 1 to 5

References

S. Seager University of Arizona Press Chapter 3 (J. Winn)

C. A. Haswell Cambridge University Press Chapters 2 to 7