Introduction to exoplanetology

Michaël Gillon (michael.gillon@uliege.be)
 Olivier Absil (olivier.absil@uliege.be)

I. IV/V. Introduction to exoplanetology Transiting exoplanets

Michaël Gillon
michael.gillon@ulige.be

Algol: the Devil's star

Perseus constellation - V=2.1-92 light-years
Beta Per A (B8V)+ B (K0IV) in mutual orbit with $\mathrm{P}=2.85$ days (0.06 au)
Beta Per C (A5V) at 2.7 au (680 days)
Its variability could have been known by the Egyptians more than 3000 years ago. 1783: John Goodricke proposed that it is due to eclipses.
End of $19^{\text {th }}$ century: radial velocities show the multiple nature of the star.

On the importance of eclipsing binaries. I

Recall L3: $\quad K_{1,2}=M_{2,1} \sin i\left(M_{2}+M_{1}\right)^{-2 / 3} P^{-1 / 3}\left(1-e^{2}\right)^{-1 / 2} C$

$$
\text { with } \mathrm{C}=\text { constant }
$$

If RVs are measured for both stars (SB2), K_{1} and K_{2} are known.
$\rightarrow \quad \frac{K_{1}}{K_{2}}=\frac{M_{1}}{M_{2}}$,

$$
\frac{\left(M_{1} \sin i\right)^{3}}{\left[M_{1}\left(1+\frac{K_{2}}{K_{1}}\right)\right]^{2}}=\left(\frac{K_{2}}{C}\right)^{3} P\left(1-e^{2}\right)^{3 / 2}
$$

If i is known, the stellar masses can be directly measured!

Eclipses

Assumption: 2 spherical bodies

Longitude of ascending node Ω unknown
\rightarrow we assume $\Omega=180 \mathrm{deg}$
\rightarrow X-axis is the reference axis.

$$
\begin{gathered}
r=\frac{a\left(1-e^{2}\right)}{1+e \cos f} \\
X=-r \cos (\omega+f) \\
Y=-r \sin (\omega+f) \cos i \\
Z=r \sin (\omega+f) \sin i \\
\downarrow \\
r_{s k y}=r \sqrt{1-\sin ^{2}(\omega+f) \sin ^{2} i}
\end{gathered}
$$

Eclipses

$r_{s k y}$ minimal when $\mathrm{X}=0$, at the inferior (transit) and superior (occultation) conjunctions

$$
f_{\mathrm{tra}}=+\frac{\pi}{2}-\omega, \quad f_{\mathrm{occ}}=-\frac{\pi}{2}-\omega
$$

The eclipses impact parameters $=r_{\text {sky }} / R_{1}$ are

$$
b_{\mathrm{tra}}=\frac{a \cos i}{R_{\star}}\left(\frac{1-e^{2}}{1+e \sin \omega}\right) \quad b_{\mathrm{occ}}=\frac{a \cos i}{R_{\star}}\left(\frac{1-e^{2}}{1-e \sin \omega}\right)
$$

If $b \leq 1-\left(R_{2} / R_{1}\right)$: full eclipse

If $1-\left(R_{2} / R_{1}\right)<b<\left(1+R_{2} / R_{1}\right)$: grazing eclipse

Eclipses

Duration estimate: $\frac{2 R_{*}}{2 \pi a / P}=\frac{P R_{*}}{\pi a}$

Total duration: $\mathrm{T}_{\mathrm{IV}}-\mathrm{T}_{1}$

Full eclipse duration: $T_{\text {III }}-T_{\|}$

$$
\begin{array}{r}
\frac{P}{\pi} \sin ^{-1}\left[\frac{R_{\star}}{a} \frac{\sqrt{(1-k)^{2}-b^{2}}}{\sin i}\right] \frac{\sqrt{1-e^{2}}}{1 \pm e \sin \omega} \\
\downarrow \\
\begin{array}{l}
+: \text { transit } \\
-: \text { occultation }
\end{array}
\end{array}
$$

Amplitudes (uniform disks) :
Transit : $\delta=\frac{F_{S, 1} R_{1}^{2}}{F_{S, 1} R_{1}^{2}+F_{S, 2} R_{2}^{2}}\left(\frac{R_{2}}{R_{1}}\right)^{2}$
Occultation : $\delta=\frac{F_{S, 2} R_{2}^{2}}{F_{S, 1} R_{1}^{2}+F_{S, 2} R_{2}^{2}}$

Eclipses

Amplitudes (uniform disks) :
Transit: $\delta=\frac{F_{S, 1} R_{1}^{2}}{F_{S, 1} R_{1}^{2}+F_{S, 2} R_{2}^{2}}\left(\frac{R_{2}}{R_{1}}\right)^{2}$
If $F_{S, 2} R_{2}^{2} \ll F_{S, 1} R_{1}^{2} \xrightarrow{ } \delta_{t r}=\left(\frac{R_{2}}{R_{1}}\right)^{2} \quad$ Exoplanet + star

Occultation: $\quad \delta=\frac{F_{S, 2} R_{2}^{2}}{F_{S, 1} R_{1}^{2}+F_{S, 2} R_{2}^{2}}$
If $F_{S, 2} R_{2}^{2} \ll F_{S, 1} R_{1}^{2} \longrightarrow \delta_{o c}=\frac{F_{S, 2}}{F_{S, 1}}\left(\frac{R_{2}}{R_{1}}\right)^{2} \quad$ Exoplanet + star

Transiting planet: if δ_{tr} and $\delta_{o c}$ measured, and $\mathrm{F}_{\mathrm{S}, 1}$ known $\rightarrow \mathrm{F}_{\mathrm{S}, 2}$
Emission spectrum of an exoplanet without having to spatially resolve it

Limb darkening

Disk center: emission of deeper hotter layers than for the limb $\rightarrow I_{s}$ is larger

Surface intensity I_{s} depends on the angle of incidence

$$
\text { Analytical model: } \frac{I(\psi)}{I(0)}=1+\sum_{k=1}^{N} A_{k}(1-\cos (\psi))^{k}
$$

Limb-darkening decreases with λ because $\frac{d B_{\lambda}}{d T} \approx \frac{2 c k}{\lambda^{4}}$

Limb darkening

Consequence for transits: the drop of brightness varies with λ. δ_{tr} is larger than \mathbf{k}^{2} near the center, smaller near the limb

Transit = 1D cartography of the stellar disk

Geometric probability of eclipse

$$
\begin{aligned}
& p_{\text {tra }}=\left(\frac{R_{\star} \pm R_{p}}{a}\right)\left(\frac{1+e \sin \omega}{1-e^{2}}\right) \\
& p_{\mathrm{occ}}=\left(\frac{R_{\star} \pm R_{p}}{a}\right)\left(\frac{1-e \sin \omega}{1-e^{2}}\right)
\end{aligned}
$$

$$
p_{\text {tra }}=p_{\text {occ }}=\frac{R_{\star}}{a} \approx 0.005\left(\frac{R_{\star}}{R_{\odot}}\right)\left(\frac{a}{1 \mathrm{AU}}\right)^{-1}
$$

On the importance of eclipsing binaries. II

If we have the RVs of both stars (SB2), we know K_{1} and K_{2}
\Rightarrow We know $M_{1} \sin i^{3}$ and $M_{2} \sin i^{3}$
If eclipses, i is known \rightarrow the mass is determined for both stars
If a measurement or an estimate of $\mathrm{T}_{\text {eff }}$ is available for both stars, the light curves analysis will provide also R_{1} / a and R_{2} / a a can be computed from P and $M_{1}+M_{2}$, so R_{1} and R_{2} can be determined

Model-independent determination of stellar masses and radii!

Searching for exoplanet transits?

Otto Struve [1952]

F. Rossenblatt [1971]

William J. Borucki [1984]

Probability? 0.5% for an Earth analog, 0.1% for Jupiter, $\sim 10 \%$ for a hot Jupiter
Amplitude? ~1\% for a gas giant planet $\sim 0.01 \%$ for a terrestrial planet

Requires measuring the evolution of the brightness of thousands of stars (timeseries photometry) with a precision of 0.1% (0.001%) to detect Jupiter-sized (Earth-sized) planets.

Other possible strategy: search for the transits of RV planets

2000: first detection

Planet HD209458b first detected by radial velocity

$0.7 \mathrm{M}_{\text {Jupiter }} 1.35 \mathrm{R}_{\text {Jupiter }}$

The years 2000: first transit surveys

OGLE-III

From 2001
Varsaw 1.3 m telescope 1.3 m
First exoplanet discovered by transit in 2003

TrES

3 telescopes of 10 cm . Field of view of $5.7^{\circ} \times 5.7^{\circ}$
Multi-longitudes: California, Arizona, Canary Islands
First detection in 2004

XO

$2 \times 11 \mathrm{~cm}$ lenses. Field of view of $7.2^{\circ} \times 7.2^{\circ}$
First detection in 2006

HATNet

$6 \times 11 \mathrm{~cm}$ lenses. Field of view $8^{\circ} \times 8^{\circ}$
Multi-longitudes : Hawaii, Arizona
First detection in 2006
Now in Southern hemisphere too

WASP: Wide-Angle Search for Planets

UK universities + foreign collaborators (including ULiege)
First detection in 2007 . Lenses of $11 \mathrm{~cm}+\mathrm{CCD}$
>200
8 lenses per station. Field of view $7.8^{\circ} \times 7.8$ per lens
Stations: Canary Islands + South Africa

2007 : CoRoT, first space transit survey

- France (CNES) + ESA + several countries (inc.
Belgium)
- Objectives: study of stars (asteroseismology) and transit search
- Telescope of 27 cm - Field of view of $3.5 \mathrm{deg}^{2}$
- Geocentric orbit
- Launch on 27 December 2006

- Fatal breakdown on 2 November 2012
- More than 20 detected planets, including

CoRoT-7b, the first transiting super-Earth

- Unicorn constellation
$-\sim 5 \mathrm{M}_{\text {Earth }}, \sim 1.7 \mathrm{R}_{\text {Earth }}$
- Orbital period of 20.5 hrs!

The first transiting super-Earth

The NASA Kepler mission

- USA (NASA)
- Objective: search for terrestrial exoplanets
- Telescope of 95 cm - Field of view of $115 \mathrm{deg}^{2}$
- Heliocentric orbit
- Launch on 7 March 2009.
- End of nominal mission on 15 August 2013.
- More than 2500 detected planets
- More than 3000 candidates still to be confirmed

The NASA Kepler mission

Milky Way Galaxy

The NASA Kepler mission

Kepler: more than 4000 candidates

Kepler: multiple transiting systems

Kepler-11b	Kepler-11c	Kepler-11d
$1.97 R_{E}$	$3.15 R_{\mathrm{E}}$	$3.43 R_{\mathrm{E}}$

Lissauer et al. (2011)

Example : Kepler-11, solar-type star 2000 light-years away 6 transiting planets, from 2 to $4.5 \mathrm{R}_{\text {Earth }}$ and from 10 to 120 days period Mass measurements from their gravitational interactions (TTVs).

Kepler-16b: first circumbinary planet

Binary period $=41$ days
Planet's period $=230$ days
1.1 $\mathrm{M}_{\text {Saturn }}, 0.9 \mathrm{R}_{\text {Saturn }}$

Kepler: Earths

Kepler-20e Venus Earth Kepler-20f

Kepler-22b: first transiting super-Earth in the habitable zone of its host star

Kepler: Mercuries!

Barclay et al. (2013)

The intriguing Kepler-42 multiple system

Star of $<0.2 R_{\text {sun }} 125$ light-years away

Kepler: ultra-high precision photometry

Kepler reloaded: the K2 mission

In May 2013, Kepler lost the second of four gyroscope-like reaction wheels...

Kepler's Second Light: How K2 Will Work

Kepler: summary of results (03/2021)

- 2820 confirmed planets (by RV or TTV ou dynamical+statistics)
- Smaller planet= Kepler-37b, 0.3 $\mathrm{R}_{\text {Earth (Barclay et al. 2013) }}$
- 10 circumbinary planets
- 5 potentially habitable planets (http://phl.upr.edu/projects/habitable-exoplanets-catalog)
- Thorough characterization of several 'hot Jupiters'
- 3255 candidates still to be confirmed. Statistical analysis suggests that $90 \%=$ planets (Fressin et al. 2013)
$\sim 50 \%$ of solar-type stars have a planet with $\mathrm{P}<88$ days (Mercury)
"Earths" (<1.25 $\mathrm{R}_{\text {earth }}$):
17\%
«Super-Earths» (between 1.25 and $2 R_{\text {earth }}$): 20\%
«Mini-Neptunes» (between 2 and $4 R_{\text {earth }}$): 20\%
« Big Neptunes » and larger (>4 $\mathrm{R}_{\text {earths }}$): 4\%

Kepler: summary of results (03/2018)

- Red dwarfs (Teff $<4000 \mathrm{~K}$): 0.9 planet / star with $\mathrm{P}<50$ days et $\mathrm{R}<4 \mathrm{R}_{\text {Earth }}$.
0.15 Earth-sized planet in the habitable zone per star (Dressing et al. 2013)

Modeling of transit light curve

Modeling of a transit light curve

1. A set of initial values is assumed for (e.g.)
$P=$ orbital period (fixed if only one transit)
$e=$ eccentricity
$\omega=$ argument of periastron
$\mathrm{T}_{\mathrm{tr}}=$ time of inferior conjunction (mid-transit)
$b=a \operatorname{cosi} / R_{*}=$ impact parameter (if circular orbit)
$\mathrm{W}=$ transit duration $\mathrm{T}_{\mathrm{IV}}-\mathrm{T}_{\mathrm{I}}$
$k=R_{p} / R_{*}=$ square root of transit depth

Modeling of a transit light curve

2. The scale parameter a / R_{*} is computed via

$$
\begin{gathered}
W=\frac{P}{\pi}\left[\sin ^{-1}\left[\frac{R_{\star}}{a} \frac{\sqrt{(1+k)^{2}-b^{2}}}{\sin i}\right]\right. \\
\frac{\frac{W \pi}{P} \frac{1+e \sin \omega}{\sqrt{1-e^{2}}}}{x}=\sin ^{-1}\left[\frac{R_{*}}{a} \frac{\sqrt{(1+k)^{2}-b^{2}}}{\sin i}\right] \\
\frac{\sqrt{(1+k)^{2}-b^{2}}}{\sin X}=\frac{a}{R_{*}} \sqrt{1-\cos ^{2} i} \\
\frac{(1+k)^{2}-b^{2}}{\sin ^{2} X}+b^{2}=\left(\frac{a}{R_{*}}\right)^{2}
\end{gathered}
$$

Modeling of a transit light curve

3. The stellar density is inferred from Kepler's third law (assuming $M_{p} \ll M_{*}$)

$$
a^{3}=\left(\frac{P^{2} G M_{*}}{4 \pi^{2}}\right) \quad \frac{a^{3}}{R^{3}}=\left(\frac{P^{2} G M_{*}}{4 \pi^{2}}\right) \frac{1}{R_{*}^{3}}=\left(\frac{P^{2} G}{3 \pi}\right) \frac{\rho_{*}}{\rho_{\text {sun }}}
$$

High-precision transit light curve
\rightarrow strong constraint on stellar properties

Modeling of a transit light curve

4. For each photometric measurement, the position of the planet relative to the star is computed, and from that the fraction of stellar disk occulted by the planetary disk (assuming spherical shapes for both bodies)

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{tr}}=\pi / 2-\omega \quad \mathrm{E}_{\mathrm{tr}}= 2 \tan ^{-1}\left(\sqrt{\frac{1-e}{1+e}} \tan \left(\frac{f_{t r}}{2}\right)\right) \quad \mathrm{M}_{\mathrm{tr}}=\mathrm{E}_{\mathrm{tr}}-\mathrm{e} \sin \mathrm{E}_{\mathrm{tr}} \\
& \mathrm{~T}_{\text {periastron }}=\mathrm{T}_{\mathrm{tr}}-\mathrm{M}_{\mathrm{tr}}^{*} \mathrm{P} \\
& \mathrm{t} \rightarrow \mathrm{M} \rightarrow \mathrm{E} \rightarrow \mathrm{f} \rightarrow \frac{r}{R_{*}}=\frac{a}{R_{*}} \frac{\left(1-e^{2}\right)}{1+e \cos f} \\
& \rightarrow \quad \frac{r_{s k y}}{R_{*}}=\frac{r}{R_{*}} \sqrt{1-\sin ^{2}(\omega+f) \sin ^{2} i}
\end{aligned}
$$

Modeling of a transit light curve

$$
\begin{array}{cc}
\frac{r_{s k y}}{R_{*}}<1-\frac{R_{p}}{R_{*}} & \text { Full superposition } \\
\frac{r_{s k y}}{R_{*}}>1+\frac{R_{p}}{R_{*}} \quad \text { Zero superposition } \\
1-\frac{R_{p}}{R_{*}} \leq \frac{r_{s k y}}{R_{*}} \leq 1+\frac{R_{p}}{R_{*}} & \text { Partial superposition }
\end{array}
$$

Computation of the drop of brightness with an algorithm adapted to the selected limb-darkening law (e.g. Mandel et Agol 2002).

Physical parameters

Transit provide $R_{p} / R_{*}, a / R_{*}$, and $\rho_{* .}$ How to obtain R_{*}, R_{p} and a ?

Option 1: independent spectroscopic analysis provides $T_{\text {eff, }}[\mathrm{Fe} / \mathrm{H}]$, and $\log \mathrm{g}$. Analysis based on stellar evolution models gives M_{*}, and R_{*} is computed from $M_{*}+$ ρ * from transits.

Option 2: after (or during) the analysis of the transits, ρ_{*} is added as input in the determination of $M *$ from stellar evolution models.

Option 3: same as option 1 and 2, except that the stellar evolution models are replaced by empirical laws M_{*} (Teff, [Fe/H], logg) or M_{*} (Teff, [Fe/H], ρ_{*}) calibrated on eclipsing binaries (Torres et al. 2009, Enoch et al. 2012).

Option 4: determination of R_{*} by interferometry or with luminosity + parallax $+T_{\text {eff }}$ (nearby star) $\rightarrow \rho_{\star}$ from the transits is then used to determine $M_{\text {* }}$

Option 5: if ρ * is poorly constrained by transits (low SNR, small planet), a priori values are assumed for $M *$ and $R *$, or a measurement of $\rho *$ obtained by asteroseismology is used.

Global Bayesian analysis

Practically, it is always preferable to use all the available information and data to maximize the constraints and to identify the most consistent solutions ... or to reveal a consistency problem.

A posteriori probability distributions for $\mathbf{M}_{*}, \mathbf{R}_{*}, \mathbf{M}_{p}, \mathbf{R}_{p}, i, a, e$, etc...

Other effects affecting the data

Correlation of the flux with airmass (differential extinction), position on the chip, PSF geometry, background, chip temperature and gain, stellar variability, etc \rightarrow global modeling of systematic effects and eclipses

Red noise

A part of the systematics can't be modeled.
It creates correlated noise (structures) in the light curves

Low-frequency (<< lower than the sampling frequency) noise = RED NOISE 42

Taking into account the red noise

Several possible approachs.

1. Aggressive filtering of the light curves before analysis until reaching a fully white noise
Ex: SYSREM (Tamuz et al. 2005)
Problem: « cleaning» the light curves = modify the signal $*$
2. «Prayer bead» method = residual permutation (Jenkins et al. 2002)
3. Rescaling of the photometric errors (Winn et al. 2007)

Binning of the data to several time bins
Computation of the standard deviation of the residuals
Comparaison with the deviation expected in case of white noise ($\mathrm{N}^{-1 / 2}$)
The largest ratio gives the corrective factor to apply to the errors
4. Modeling of the red noise: wavelets (Carter \& Winn 2009), gaussian processes (Danielski et al. 2013), etc.

Open source transit analysis programs

- Transit Analysis Package - Gazack et al. 2012
- PyTransit - Parviainem 2015
- ExoFAST - Eastman 2013, 2019
- AstrolmageJ - Collins et al. 2017
- Exoplanet - Foreman-Mc Key 2021
- Transit Light Curve Modeller - Smith et al. 2017
- Allesfitter - Gunther \& Daylan 2018
- Juliet - Espinoza et al 2018, 2019
- Pyaneti - Barragan et al. 2019
etc...

Transits: a success story

Detections Per Year
11 Mar 2022
exoplanetarchive.ipac.caltech.edu

か○

Discovery Year

The challenges of transit surveys

Basic strategy:

1. Light curves for hundreds of thousands of stars
2. Search for periodic box-shape signals consistent with transits
3. Follow-up of the selected candidates to confirm/reject the planetary hypothesis
4. Statistical analysis of ambiguous candidates (Kepler)

Main problem: transit-like signals can have other causes than planets!

The challenges of transit surveys

Next to a star, there are often other stars...

The challenges of transit surveys

Background eclipsing binary blended with the target

Discrimination: higher-resolution photometry

The challenges of transit surveys

What if nearly-perfect superposition (ex. triple system)?

Discrimination: Doppler spectroscopy - bisector

The challenges of transit surveys

Grazing eclipsing binary

Discrimination: high-precision photometry and/or Doppler spectroscopy

The challenges of transit surveys

Anderson et al. (2011)

Transit of a planetary size object: ultracool dwarf (very-low-mass star or brown dwarf)

e.g. WASP-30b : a brown dwarf of $61 \mathrm{M}_{\text {Jup }}$

Discrimination: Doppler spectroscopy + (occultation photometry)

The challenges of transit surveys

What if no RV detection?

1/ Hot and/or fast-rotating star
Upper limit on the planet's mass from RVs
e.g. WASP-33b: $\mathrm{M}_{\mathrm{p}}<4.1 \mathrm{M}_{\text {jup }}$ on a 1.2d orbit around an A5-type star
(Collier-Cameron et al. 2010)

2/ Very-low-mass planets (e.g. Kepler, TRAPPIST-1)
Multiple transiting system: constraints on the masses from the transit timing variations (TTVs) due to planet-planet interactions (Holman \& Murray 2005; Agol et al. 2005)

Modeling of the light curves with planet and eclipsing binary models, and statistical inferences from models comparison.
e.g. Blender (Torres et al. 2010), TRICERATOPS
(Giacalone et al. 2020)

The TTV method

The TTV method: TRAPPIST-1

The Rossiter-Mc Laughlin effect

Rotating star + opaque transiting object High-cadence RV monitoring shows an « anomaly » during the transit. $1^{\text {st }}$ observation: 1911 (eclipsing binary) by Forbes \& Schesinger

The Rossiter-Mc Laughlin effect

$$
\text { Amplitude: } \quad \Delta R V \approx \frac{R_{p}^{2}}{R_{*}^{2}} \sqrt{1-b^{2}} V_{*} \sin I_{*}
$$

Geometry: depends on the angle λ between the projections on the sky plane of the stellar spin axis and the planet's orbital axis.

The Rossiter-Mc Laughlin effect

First detection for an exoplanet: HD209458b in 2000

The Rossiter-Mc Laughlin effect

λ teaches us about the dynamical history of the system (migration)

Disk-driven migration mechanisms predict circular well-aligned orbits.
3-body migration mechanisms (planet-planet scattering or Kozai) predict eccentric misaligned orbits.

Observations: many hot Jupiters on misaligned, and even retrograde, orbits

Good agreement with predictions of 3-body migration models

The Rossiter-Mc Laughlin effect

Traces of orbital realignement by tidal effects?

Studying the atmospheres of transiting planets

Transit transmission spectrophotometry

Bean et al. (2011)

Signal amplitude? (Seager \& Sasselov 2000) At the λ of a strong atomic or molecular transition, the effective radius of the planets increases of some $\left(\mathrm{N}_{\mathrm{H}} \sim 5\right)$ scale heights $\mathrm{H}=$ kT/ng

$$
\Delta \delta=\frac{\pi\left(R_{p}+N_{H} H\right)^{2}}{\pi R_{\star}^{2}}-\frac{\pi R_{p}^{2}}{\pi R_{\star}^{2}} \approx 2 N_{H} \delta\left(\frac{H}{R_{p}}\right)
$$

Hot Jupiter: ~100ppm, Earth+Sun: ~1ppm

Transit transmission spectrophotometry

Rayleigh scattering is λ-dependent and stronger at shorter wavelengths. It concerns the molecules and condensates that are small compared to λ.

For bigger particules (compared to λ) \rightarrow Mie scattering, less λ-dependent.
Depending on the atmosphere composition, the extent of the cloud cover, and the composition and altitude of the clouds, these two kinds of scattering impact more or less strongly the transmission spectra.

Transit transmission spectrophotometry

Practically:

Broadband observation of several transits at different wavelengths BUT: impact of stellar variability; low spectral resolution

Mono- (space) or multi-object (ground) time-series spectroscopy,
\rightarrow wide-slit spectroscopy or Integral Field Unit (IFU)

Transit transmission spectroscopy: results

Atomic sodium in the atmosphere of HD209458b

Instrument: STIS spectrograph aboard HST
Objective: to detect the $\mathrm{NaI}(5890,5986 \AA$) resonance doublet signal, basing on theoretical predictions of Seager \& Sasselov (2000)

~ 4 sigmas detection
Signal 3 times fainter than expected
Depletion of $\mathrm{Na} \mathrm{I?} \mathrm{Competition}$
between Na and $\mathrm{Na}_{2} \mathrm{~S}$? Then only 1%
of Na should be in atomic form...
High-altitude clouds?

Transit transmission spectroscopy: results

Atmospheric escape for HD209458b

Instrument: STIS spectrograph aboard HST
Objective: To detect the H Lyman-a (121.6 nm) line.

~ 4 sigmas detection
Effective radius of $4.3 \mathrm{R}_{\text {jup }}$!
Exosphere forming a comet-like coma around the planet

Mass loss is negligible ($\sim 0.1 \%$ over the life of the star)

Transit transmission spectroscopy: results

Atmospheric escape for HD209458b

Transit transmission spectroscopy: results

Water in the atmosphere of HD209458b ?

Instrument: STIS spectrograph aboard HST
Objective: low-resolution spectrum between 300 and 1000nm

Instrumental effects
\rightarrow low-significance detection

Transit transmission spectroscopy: results

Water in the atmosphere of HD189733b ?

Instrument: IRAC camera aboard Spitzer
Objective: detection of $\mathrm{H}_{2} 0$ that should produce $\Delta\left(\mathrm{dF}_{5.8 \mu \mathrm{~m}}-\mathrm{dF}_{3.6 \mu \mathrm{~m}}\right)$ between 150 and 400ppm

Only $\mathrm{H}_{2} \mathrm{O}$ explains the measurements
R_{p} larger in the optical?
If so: clouds? Aerosols? Effect of spots?

But independent analysis of the same data did not confirm the results...

Transit transmission spectroscopy: results

Methane in the atmosphere of HD189733b ?

Instrument: NICMOS spectrograph aboard HST
Objective: low-resolution spectrum in the near-IR

Detection of $\mathrm{H}_{2} \mathrm{O}$ and CH_{4}
CO should be the main carbon molecule when $T>1200 \mathrm{~K}$
\rightarrow Chemical gradient?
\rightarrow Photochemical mechanism?

Light curves are « detrended » using out-of-transit data and an arbitrary function of 5 external parameters.
\rightarrow Errors ~50ppm. Realistic?

Transit transmission spectroscopy: results

Spectrum dominated by Rayleigh scattering (dust)
Spots complicate the interpretation
NICMOS systematic effects were strongly underestimated.

Transit transmission spectroscopy: results

The actual transmission spectrum of HD189733b

Spectrum dominated by Rayleigh scattering (high-altitude haze) and/or by unocculted star spots
Na, K, and water signatures are detected

Transit transmission spectroscopy: results

Some more recent results...

Comprehensive survey of ten planets shows a continuum of clear to cloudy atmospheres on hot Jupiters...

Artist's Impression of "Hot Jupiter" Exoplanets NASA and ESA - STScl-PRC15-44a

Transit transmission spectroscopy: results

TiO and $\mathrm{H}_{2} \mathrm{O}$ in the very hot ($\mathrm{T}_{\text {eq }} \sim 1900 \mathrm{~K}$) giant planet WASP-19b

Sedagahti et al. 2017

Transit transmission spectroscopy: results

Studying small planets? Targetting small stars!

GJ1214b: 2.8 $R_{\text {earth }}+0.22 R_{\text {sun }}$

Transit transmission spectroscopy: results

Water in the atmosphere of the bloated hot Neptune HAT-P-26b 18.6 $\mathrm{M}_{\text {earth, }} 6.3 \mathrm{R}_{\text {earth }}+0.8 \mathrm{R}_{\text {sun }}$ K-dwarf

Wakeford et al. (2016)

Transit transmission spectroscopy: results

Water in the atmosphere of the habitable zone super-Earth K2-18b
8.5 $\mathrm{M}_{\text {earth }}$, $2.3 \mathrm{R}_{\text {earth }}+0.5 \mathrm{R}_{\text {sun }}$ M-dwarf

Transit transmission spectroscopy: results

A giant comet-like cloud of hydrogen escaping a hot Neptune Instrument: STIS spectrograph aboard HST

Objective: measure the transit in H I Ly-a line (121.6nm)

Transit depth: 56\% instead of 0.7\%!

Transit transmission spectroscopy: stellar issue?

The Transit Light Source Effect

Pre-transit Stellar Disk is the
Assumed Light Source

Actual Light Source is the Chord Defined by the Planet's Projection

Rackham et al. 2017

High-resolution transit spectroscopy

Principles:

transit \rightarrow absorption of the stellar light by the atmosphere's molecular lines (e.g. CO).
During the transit, the lines of the star and of the planet move quickly in opposite direction
Method: cross-correlation with a synthetic transmission spectrum of CO (or other molecules)

Requires very high signal-to-noise ratio and resolution in the IR. (e.g. CRIRES spectrograph on the VLT, R~100,000)

Method's outcomes:

Orbital speed of the planet $->$ stellar mass (SB2).
Abundance of CO in the limb of the planet
Shift in RV relative to the star: wind

High-resolution transit spectroscopy

HD209548b with VLT/CRIRES

Detection significance: 5.6σ

Snellen et al. (2010)

Occultation emission spectrophotometry

$$
\mathrm{IR}: \left\lvert\, \delta_{\mathrm{occ}}(\lambda)=k^{2} \frac{B_{\lambda}\left(T_{p}\right)}{B_{\lambda}\left(T_{\star}\right)}\right.
$$

Measurement of the brightness temperature $\mathrm{T}_{\mathrm{b}}(\lambda)$ of the dayside hemisphere.

Optical:

$$
\delta_{\mathrm{occ}}(\lambda)=A_{\mathrm{g}^{\lambda}}\left(\frac{R_{p}}{a}\right)^{2}
$$

Measurement of the geometrical albedo A_{λ} of the dayside hemisphere.

Occultation emission spectrophotometry

Thermal emission measurement: measurement of the brightness temperature of the planet's dayside

Constraint on the day-night heat distribution and on the albedo

$$
T_{e q, a v}=T_{*}\left(\frac{R_{*}}{a}\right)^{1 / 2}\left[f\left(1-A_{\mathrm{B}}\right)\right]^{1 / 4}
$$

$f=$ redistribution factor
$=1 / 4$ if incident energy is distributed uniformly by the atmosphere
$=2 / 3$ if it is directly reemitted by the dayside
$A_{B}=$ Bond albedo

$$
\mathrm{T}_{\text {eq,day }} \text { can reach } 3000 \mathrm{~K} \text { for a hot Jupiter! }
$$

Corresponding occultation depth in the near-IR: $\sim 1 / 1000^{\text {th }}$

Occultation emission spectrophotometry

Bond albedo $A_{B}=$ fraction of incident energy reflected back to space. A_{B} between 0 and 1

Geometrical albedo $\mathbf{A}_{\mathbf{g}}(\boldsymbol{\lambda})=$ ratio between the flux of the light reflected by a planet seen at phase angle $a=0$ and the flux of the light reflected by a Lambertian disk of same angular size.

Lambertian surface = fully reflecting surface, with an isotropic emission surface intensity (e.g. a white sheet).
$A_{g}(\lambda)$ can be >1 ! e.g. A_{g} (optical) for Enceladus $=1.38$
Depends on the scattering properties of the surface material.

Brightness temperature $\mathbf{T}_{b}(\boldsymbol{\lambda})=$ temperature of a black body for which the flux at the wavelength λ would match the measured flux.

Occultation emission spectrophotometry

First detection: 2005 - TrES-1b - Charbonneau et al. (2005) Instrument : Spitzer/IRAC at 4.5 and 8 microns

$$
\begin{gathered}
\mathrm{dF}_{4.5 \mu \mathrm{~m}}=660 \pm 130 \mathrm{ppm} \\
\mathrm{dF}_{8 \mu \mathrm{~m}}=2250 \pm 360 \mathrm{ppm} \\
\mathrm{~T}_{\mathrm{b}, 4.5 \mu \mathrm{~m}}=1010 \pm 60 \mathrm{~K} \\
\mathrm{~T}_{\mathrm{b}, 8 \mu \mathrm{~m}}=1230 \pm 110 \mathrm{~K} \\
\downarrow \\
\begin{array}{l}
\text { (}
\end{array} \\
\mathrm{T}_{\text {eq,jour }}=1060 \pm 50 \mathrm{~K} \\
\rightarrow \mathrm{~A}_{\mathrm{B}}=0.31 \pm 0.14 \text { for } \mathrm{f}=1 / 4
\end{gathered}
$$

Of course, a planet is not a black body, and f is unknown...

Occultation emission spectrophotometry: results

First detection: 2005 - TrES-1b - Charbonneau et al. (2005)
Instrumen : Spitzer/IRAC at 4.5 and 8 microns

Model for 51 Peg b (Sudarsky et al. 2003) adapted to TrES-1b

Occultation emission spectrophotometry

First detection: 2005 - HD209458b - Deming et al. (2005) Instrument: Spitzer/MIPS at 24 microns

$$
\begin{aligned}
& \mathrm{dF}_{24 \mu \mathrm{~m}}=260 \pm 50 \mathrm{ppm} \\
& \mathrm{~T}_{\mathrm{b}, 24 \mu \mathrm{~m}}=1130 \pm 150 \mathrm{~K}
\end{aligned}
$$

Occultation emission spectrophotometry

The important contribution of the Spitzer Space Telescope

- Launch in 2003
- Cryogenized to 5.5K (Beryllium mirror) by liquid He until May 2009
- 85 cm aperture
- Heliocentric orbit, receding from Earth (0.1 au/yr)
- 3 instruments:
- IRAC camera (3.6, 4.5, 5.8, and $8 \mu \mathrm{~m}$)
- IRS spectrograph ($5 \& 40 \mu \mathrm{~m}$), low ($\mathrm{R} \sim 60-130$) and medium ($\mathrm{R} \sim 600$) resolution
- MIPS camera (24, 70, $160 \mu \mathrm{~m}$)

Occultation emission spectrophotometry: results

The large contribution of Spitzer

$\begin{array}{llllll}2 & 3 & 4 & 5 & 6 & 81\end{array}$

Deming \& Seager (2010); Crossfield et al. (2012)

Occultation emission spectrophotometry: results

The complementary contribution of ground-based telescopes: the near-IR (JHK)

Sing \& Lopez-Morales (2009)

Croll et al. (2011)

WASP-43b $1.19 \& 2.09 \mu \mathrm{~m}$

Gillon et al. (2012)

TrES-3b K

De Mooij \& Snellen (2009)

Gillon et al. (2009)

CoRoT-1b K

Rogers et al. (2010)
WASP-4b K

	$\begin{array}{lllllll} 0.44 & 0.46 & 0.48 & 0.50 & 0.52 & 0.54 & 0.56 \\ & & \text { Orbital phase } \end{array}$

Caceres et al. (2011)
WASP-12b z'

Lopez-Morales et al. (2010)

WASP-19b $2.09 \mu \mathrm{~m}$

Gibson et al. (2010)

Occultation emission spectrophotometry: results

The complementary contribution of ground-based telescopes the near-IR $(J H K)=$ SED peak of hot Jupiters

WASP-12b: a planet without stratosphere and with a large C/O ratio?

Not so sure... (Crossfield etal. 2013)

Occultation emission spectrophotometry: results

HD 189733b

Spitzer/MIPS $24 \mu \mathrm{~m}$
Spitzer/IRS $16 \mu \mathrm{~m}$
Spitzer/IRS spectrum from 5 to $15 \mu \mathrm{~m}$
Spitzer/IRAC 3.6, 4.5, 5.8, $8 \mu \mathrm{~m}$
HST/NICMOS spectrum from 1.7 to $2.5 \mu \mathrm{~m}$

Marginal water detection

 (Crouzet et al. 2014)Thermal profile: monotone, no stratosphere detected (Madhusuchan \& Seager 2009)

Spectrum dominated by condensates? (Pont etal. 2013)

Occultation emission spectrophotometry: results

Some hot Jupiters have a stratosphere

Occultation emission spectrophotometry: results

The first emission spectrum of a 'hot Neptune'

Stevenson et al. (2010)

High CO abundance, deficiency in CH_{4}
$\mathrm{CH}_{4} / \mathrm{CO}$ ratio at least 10^{5} times smaller than expected...
Chemical disequilibrium? (vertical mixing? methane polymerisation?)

Occultation emission spectrophotometry: results

The first detection of the light of a 'super-Earth'

$131 \pm 28 \mathrm{ppm}-\mathrm{T}_{\text {brightness }}=2350 \pm 300 \mathrm{~K}$ Spitzer IRAC - $4.5 \mu \mathrm{~m}-4$ observed occultations
$2 R_{\text {earth }}+$ G8-type star at $12 p c-V=6, K=4$
P<18hrs!

Occultation emission spectrophotometry: results

The variable emission of the super-Earth 55 Cnce

Io-like volcanism?

Tore of circumstellar material?

Phase curve

Longitudinal map = constraint on the heat transfert and albedo

Phase curve

Longitudinal map = constraint on the heat transfert and albedo

Degeneracy heat transfert/albedo raised by phase curve in the optical (albedo) \& IR (heat transfert).

Kepler-7b - Kepler photometry in the optical High albedo for a hot Jupiter ($\mathrm{A}_{\mathrm{g}} \sim 0.3$)

HD189733b - Spitzer photometry at $8 \mu \mathrm{~m}$ Efficient distribution \& hot spot shifted to the East

WASP-12b - Spitzer photometry at $3.6 / 4.5 \mu \mathrm{~m}$ Inefficient distribution and non-zero albedo

Phase curve and 1D map: example

Hot Jupiter Kepler-7 : $0.45 \mathrm{M}_{\mathrm{J}}, 1.6 \mathrm{R}_{\mathrm{J}}, \mathrm{T}_{\text {eq }}=1600 \mathrm{~K}$ Occultation not detected by Spitzer \rightarrow reflected light
$\mathrm{A}_{\mathrm{g}}=0.35 \pm 0.02$
Shape of the phase curve indicates a variation of the reflecting surface with longitude \rightarrow clouds (silicates?)

Phase curve and 1D map: super-Earth!

55 Cancri e: $8 \mathrm{M}_{\text {Earth }}$, $2 \mathrm{R}_{\text {Earth, }}$, on a 18 hr orbit around a nearby solar-type star Day side is heated up to 3000 K !
Night side is 1300 K cooler
This large thermal gradient is consistent with an atmosphereless rocky planet Phase shift: lava flows on the dayside?

Phase curve + eclipse scanning

2D-map of exoplanets!

HD189733b
Global analysis of Spitzer data e < 0.0081 (at 2- σ)
Hot spot at $24 \pm 11^{\circ} \mathrm{E}, 17 \pm 10^{\circ} \mathrm{N}$
de Witt et al. (2012)
See also Majeau et al. (2012)

High-resolution phase spectroscopy

VLT/CRIRES, R=100000, $3.2 \mu \mathrm{~m}$
Detection of $\mathrm{H}_{2} \mathrm{O}$ at $5-\sigma$
Phase from 0.38 to $0.48, \mathrm{dVR}_{\mathrm{p}} \sim 75 \mathrm{~km} / \mathrm{s}$

Transiting planets: present \& future

1. Detections

Next-Generation Transit Survey (NGTS)

ESO Paranal - since 2016
Search for Neptunes around K- and early-M-type stars with $\mathrm{V}<13$
12 telescopes of 20 cm
Field of view of $3^{\circ} \times 3^{\circ}$ by telescope, 108 deg 2 in total

CHaracterising ExOPlanets Satellite (CHEOPS)
Switzerland/ESA and several countries (Belgium)
Telescope of 30 cm in low geocentric orbit Launched in 2019, operations ongoing.
Search for transits of RV planets
Caracterisation of planets transiting nearby stars

Transiting planets: present \& future

1. Detections

Transiting Exoplanet Survey Satellite (TESS)

MIT/NASA - launched in 2018
Orbit in 1:2 resonance with the Moon Survey of 2 years on all stars with $\mathrm{V}<12$ ~ 27 days per target, more for ecliptic poles Several lenses of $\sim 13 \mathrm{~cm}$ Detection of super-Earths and Neptunes around nearby FGKM-types stars.

[^0]

Transiting planets: the future

2. Atmospheric study

The importance of M-dwarfs

The importance of M-dwarfs

ESO

G2V

\qquad
$1.0000 \mathrm{~L}_{\odot}$
365.2 days

Charbonneau (2009)

Based on Kaltenegger \& Traub (2009)

The importance of M-dwarfs

GJ436b : first transiting < Neptune » Transit detected en 2007 with an amateur 60 cm telescope in the Swiss mountains (St-Luc)

The importance of M-dwarfs

The importance of M-dwarfs

MEarth: 2x8 telescopes of 40cm - Arizona + Chile - individual observations of nearby ($<33 \mathrm{pc}$) M-dwarfs smaller than 0.3 Rsun MEarth-like survey: Apache (Italy)

GJ1214b
Charbonneau et al. 2009

The importance of M-dwarfs

MEarth $2^{\text {nd }}$ discovery: GJ1132b

The importance of M-dwarfs

MEarth 3rd discovery: LHS1140b

6.7 Mearth
1.4 Rearth

Teq ~230K
P=24.7d
Mstar $=0.15$ Msun
Rstar $=0.19$ Rsun

The importance of M-dwarfs

MEarth : distribution of targets per spectral type

The importance of M-dwarfs

UCD = Ultra-cool dwarfs = smallest lowest-mass stars and brown dwarfs

The importance of M-dwarfs

New nearby UCDs are regularly found

Luhman-16AB
Binary BD L9+T1 at 2pc (Luhman 2013)

Scholtz's star: M9.5 star + T5 BD at 6pc (Scholtz 2013)

The importance of M-dwarfs

UCDs and planets

MOA-2007-BLG-192Bb (Bennett et al. 2008, Kubas et al. 2012)
3.3 $\mathrm{M}_{\text {earth }}$ planet at 0.66 AU away from a star(?) of $0.085 \mathrm{M}_{\text {sun }}$ ~660pc

Disks are frequent around young UCDs (Luhman et al. 2007)
Mass and size of disk are proportionnal to the mass of the central object (Klein et al. 2003)
Planetesimal formation as frequent as for solar-type stars (Pascussi et al. 2011)

Models predict systems rich in short-period telluric planets (Raymond et al. 2007; Montgomery \& Laughlin 2009; Masahiro \& Ida 2009) They don't agree on the composition of the planets For brow dwarfs, tidal evolution could push the planets outward (Bolmont et al. 2012)

The importance of M-dwarfs

Kepler-42: Jovian-like systems frequent around UCDs?

KOI-96I and Its 3 Known Planets

$\sim 0.13 \mathrm{M}_{\odot} \sim 0.17 \mathrm{R}_{\odot}$ $\mathrm{T}_{\text {eff }} \sim 3200 \mathrm{~K}$ M4V @ 39pc

Only 27 redder dwarfs observed by Kepler mission (phase 1)

Jupiter and Its 4 Largest Moons
lo Europa Ganymede
Callisto

TRAPPIST/UCDTS

50 targets with $\mathrm{J}<11.5$ (now 12) 100hr per target
Goal: prototype (precision - variability)

SPECULOOS

Search for Planets EClipsing ULtra-cOOI Stars

 Network of 1m robotic telescopes ~1000 UCDs with K<12.5Several nights per target to explore $>50 \%$ of the habitable zone
ULiege + Cambridge + MIT + Birmingham + Bern

The SPECULOOS network

The SPECULOOS-South Observatory

The SPECULOOS-South Observatory

The SPECULOOS-South Observatory

The SPECULOOS-South Observatory

The SPECULOOS-South Observatory

SPECULOOS

Simulations predict an efficient exploration of the Earth-sized regime

Simulations: 14 ± 6 planets, with 4 ± 2 in the habitable zone

SPECULOOS

Confirmation by the TRAPPIST prototype survey!

3 Earth-sized planets

 transiting a nearby M8type starMstar $=0.08$ Msun
Rstar $=1.1$ Rjup
Teff $=2550 \mathrm{~K}$
Equilibrium temperatures of the planets between 200 and 400K

Nearby (12 pc) -> good targets for atmospheric study with JWST \& ELTs

SPECULOOS

Confirmation by the TRAPPIST prototype survey!

TRAPPIST-1

Host star: discovered in 2000 by Gizis et al. $\mathrm{V}=18.8, \mathrm{I}=14.0, \mathrm{~J}=11.3$, >500 Myr

$$
0.089 \pm 0.006 \mathrm{M}_{\odot}, \mathrm{T}_{\text {eff }}=2516 \pm 41 \mathrm{~K},[\mathrm{Fe} / \mathrm{H}]=+0.04 \pm 0.08
$$

$0.121 \pm 0.003 R_{\odot}, 0.00052 \pm 0.00002 L_{\odot}$

XMM-Newton: strong X-ray emission, $L_{x} / L_{\text {bol }}=2-410^{-4}$

TRAPPIST-1

A first opportunity to study the atmosphere of temperate Earth-sized planets

First with HST

...and then with JWST, ELTs, etc

Barstow \& Irwin (2016)
de Wit at al. (2016)

Three Earth-sized planets transiting at the same time

2016: intensive photometric follow-up from the ground

The perfect telescope for the job

Fall 2016: Spitzer cracks the system

20 days of nearly continuous observation... and 34 transits!

TRAPPIST-1 System

A very compact system

A 7-planets resonant chain

Water worlds?

TRAPPIST-1/Solar System Comparison

The composition and irradiation of the TRAPPIST-1 planets

Grimm et al (2018)

The harsh environment of TRAPPIST-1

X and UV flux on the planets estimated from XMM-Newton (Wheatley et al. 2016) and HST/STIS (Bourrier et al. 2017) measurements.

The harsh environment of TRAPPIST-1

TRAPPIST-1 planets: cooked during >1 Gyrs

2021: the James Webb Space Telescope

Credits: James Vaughan

2022: James Webb Space Telescope

Lincowski et al. 2018

Webb Telescope

TRAPPIST-1 System

Probing Seven Worlds with NASA's James Webb Space
Telescope
fロITp+

Barstow \& Irwin 2016

TESS and rocky planets around mid-type M-dwarfs

LHS3844: a rocky Earth-mass planet on a 11hr-orbit around a M4-type star at 15pc (Vanderspek et al 2018).

Spitzer phase curve suggests no atmosphere (Kreidberg et al. 2019)

LP791-18: at least 3 planets around a M6-type M-dwarf at 26.5pc, including a super-Earth at the inner edge of the habitable zone (Crossfield et al. 2019)

References

M. Perryman

Cambridge University Press
Chapter 6

S. B. Howell

Cambridge University Press
Chapters 1 to 5

C. A. Haswell

Cambridge University Press
Chapters 2 to 7

[^0]: PLAnetary Transits and Oscillations (PLATO) ESA - ~2025
 L2 orbit
 Survey of 6 ans covering $\sim 50 \%$ of the sky
 V magnitude from 4 to 16
 85000 stars with $\mathrm{V}<11$
 34 telescopes - field of 2250 deg 2
 Detection of pot. habitable Earths in front of nearby solar-type stars

