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ABSTRACT

Context. We present the CoRoT light curve of the βCep star HD 180642, assembled during the first long run of the space mission, as
well as archival single-band photometry.
Aims. Our goal is to analyse the detailed behaviour present in the light curve and interpret it in terms of excited-mode frequencies.
Methods. After describing the noise properties in detail, we use various time series analyses and fitting techniques to model the
CoRoT light curve, for various physical assumptions. We apply statistical goodness-of-fit criteria that allow us to select the most
appropriate physical model fit to the data.
Results. We conclude that the light-curve model based on nonlinear resonant frequency and phase locking provides the best repre-
sentation of the data. Interpretation of the residuals is dependent on the chosen physical model used to prewhiten the data.
Conclusions. Our observational results constitute a fruitful starting point for detailed seismic stellar modelling of this large-amplitude
and evolved βCep star.
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1. Introduction

The B1.5II-III star HD 180642 (variable star name V1449 Aql,
Vmag = 8.29) has been identified as a candidate new β Cep star
by Waelkens et al. (1998) from Hipparcos data. This classifica-
tion was confirmed by Aerts (2000), who identified the detected
frequency of 5.4871 d−1 (63.508 μHz) as a radial mode with
a large amplitude of 39 mmag in the V band, by interpreting
amplitude ratios derived from multicolour Geneva photometry
obtained with the P7 photomultiplier instrument attached to the
0.70 m Swiss telescope at La Silla, Chile.

Given that HD 180642 is the only known β Cep star with
appropriate magnitude in the field-of-view of the CoRoT space
mission (Convection, Rotation and planetary Transits Auvergne
et al. 2009), we undertook a preparatory observing effort to
assemble data to be added to the CoRoT light curve. Several
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high-resolution spectra were taken with the FEROS@2.2-m
ESO/MPI telescope in La Silla, Chile, in 2005. This led to an es-
timate of the fundamental parameters of the star, Teff = 24 500 ±
1000 K, log g = 3.45 ± 0.15, as well as an overall line broad-
ening of 44 km s−1 (and some evidence of mild nitrogen excess
(Morel & Aerts 2007), as discovered in other βCep stars from
high-precision spectroscopy (Morel et al. 2006, 2008), which
could betray deep mixing). The combination of the low gravity
and high pulsational amplitude of this class member is rather ex-
ceptional (see Stankov & Handler 2005, their Fig. 8) and seems
to suggest an object near the end of the core-hydrogen burn-
ing phase, almost ready to cross the Hertzsprung gap in the
Hertzsprung-Russell diagram.

Adding the space photometry from Hipparcos to CoRoT and
ground-based data, brings the total timespan of observations to
18 years. The dominant mode of the star is present in all of these
datasets and we thus have the means to determine its frequency
stability over time. On the other hand, the high timesampling of
the CoRoT light curve combined with its low noise level, give
us the possibility of looking for variability far beyond this dom-
inant mode. The richness of the CoRoT frequency spectrum led
at once to the conclusion that the monoperiodicity of the star
must be refuted, as has already been suggested by Uytterhoeven
et al. (2008) from the ground-based data.

Article published by EDP Sciences

http://dx.doi.org/10.1051/0004-6361/200911782
http://www.aanda.org
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/111
http://www.edpsciences.org


112 P. Degroote et al.: The CoRoT light curve of the β Cephei star HD 180642

Fig. 1. Part of the reduced CoRoT light curve (upper panel), containing 379 785 datapoints in total. Despite the intrinsic equidistant nature of
space based observations, gaps are unavoidably present, mainly due to the regular passage of the satellite through the South Atlantic Anomaly
(Auvergne et al. 2009). The lower panel shows the CoRoT light curve of the constant star HD 181072.

In this paper we thoroughly investigate the variability of
HD 180642 from single-channel photometry. Additional time
series of multicolour photometry and high-resolution spec-
troscopy of the star are the subject of a twin paper (Briquet et al.
2009).

2. Observations

2.1. The CoRoT data

The raw light curve from the CoRoT database contains
422 949 datapoints, with an average time sampling of 32 s dur-
ing 156.6 days and starting on t0 = HJD 2 454 232.091674.
This brings the Nyquist frequency up to 1350 d−1. To obtain the
highest possible precision, roughly 10% of the datapoints were
deleted because of flagged datapoints (9.8%) and extreme out-
liers (0.5% have an estimated error value above the 6σ level),
keeping 379 785 datapoints (Fig. 1).

After rigorous tests, we decided not to interpolate the re-
maining points, because the improvements in the spectral win-
dow do not weigh up against the introduced uncertainties con-
nected with the gap-filling model. The highest amplitude in the
window function is only ∼8% of the main amplitude (Fig. 2).
This means that we effectively spread out the power of each peak
over several peaks, mainly well separated by ∼13 d−1.

A raw estimate of the noise level of the light curve, computed
as the average of the periodogram between 30 d−1 and 40 d−1 is
at 57 μmag or 0.00536% in relative flux units, and slowly decays
at higher frequencies to 24 μmag or 0.0026% between 100 d−1

and 110 d−1. We do not convert the light curve to magnitudes
because the transformation from flux is not uniform and the the-
oretically predicted variations in first order are only linear in flux
units. An exception is made in the case where the CoRoT light
curve is used in combination with ground-based observations.
This does not pose a problem because of the dominant mode’s
large amplitude.

The final reduced version of the light curve has also been
corrected for long term trends: among an exponential, parabolic,

Fig. 2. Spectral window of the CoRoT measurements of HD 180642 af-
ter removing flagged datapoints and outliers. The highest peak is 8% of
the main peak, and is well separated from it.

and linear trend, the linear trend resulted in the best fit, reducing
significantly the power in the periodogram at low frequencies.
An instrumental cause of the trend seems most probable, al-
though long-term (periodical) variations in the brightness of the
star cannot be excluded from this time series alone. Previous
ground-based observations disfavour the second possibility, but
do not exclude it either.

2.2. The noise properties of the CoRoT data

The CoRoT data products contain information on the standard
deviation of the star’s intensity per second, which is interpreted
as the noise on the data. For the use and interpretation of the ap-
plied data analysis tools, it is vital to have a good understanding
of the noise properties. We divided the error by the local aver-
age flux value of the light curve represented by a polynomial fit.
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A comparison between the Fourier periodogram of the intensity
measurements and the derived standard deviations shows that in
the case of HD 180642, the latter are contaminated by the for-
mer, so do not reliably stimate the instrumental noise. Instead,
we used the measurements of the constant star HD 181072 of
spectral type A2 and visual magnitude of 9.14, which was ob-
served simultaneously on the same CCD, as an appropriate rep-
resentation of the noise properties.

Traditionally, uncorrelated, homoscedastic white Gaussian
noise is assumed in frequency analyses of βCep stars. If the
number of data points is large enough, this implies that the
distribution of the normalised Fourier periodogram can be
approximated reasonably well by an exponential distribution
(Schwarzenberg-Czerny 1998). In the following paragraphs, we
show that none of the assumptions are strictly true, but the devi-
ations are so small that the classical methods can still be applied
provided that a correction for correlated data is used.

By binning the noise measurements in samples of
1000 points, we can see that the noise is neither uncorrelated
nor homoscedastic: we identify a continuously rising trend of
(1.71 ± 0.3) × 10−5 percent d−1 and a small temporary bump
around day 130 (Fig. 3). From a log− log plot of the Scargle
periodogram, it is apparent that the noise is not white: at very
low frequencies (<0.1 d−1) there is some power excess from the
correlation effect. However, white noise is a good enough ap-
proximation for f > 0.1 d−1.

Drawing random samples of 1000 points reveals that the
noise is also not Gaussian: the sample mean is consistently
higher than the sample median, suggesting that the noise has
nonzero skewness. When falsifying samples of 1000 consecu-
tive points for normality, by testing simultaneously for skew-
ness and excess kurtosis, 65% of the samples were rejected at
a p = 0.01 acceptance level. Bootstrapping the same number of
samples of 1000 points yield a rejection rate of 85%. A Gaussian
fit to the noise histogram overestimates the average and the num-
ber of small outliers, and it consistently underestimates the num-
ber of large outliers (Fig. 3). The skewnormal distribution (e.g.
Azzalini & Capitanio 1999)

Ns(ξ, ω, α) =
1√
2πω

exp

(
− (x − ξ)2

2ω2

) (
1 + erf

[
α

x − ξ√
2ω

])
, (1)

is more appropriate to describing the overall noise specifica-
tions. For the CoRoT data, we derive values of ξ = 0.14 and
ω = 0.03 for the location and scale parameters, and a value
of α = 1.18, which determines the shape of the distribution.
(α = 0 means the distribution is normal, α > 0 means the distri-
bution is right-skewed.) These values imply right-skewed, lep-
tokurtic distributed noise, with a skewness g1 ≈ 0.2 and an ex-
cess kurtosis g2 ≈ 0.1.

Next, we simulate the influence of skewnormality on the
parameter and error estimation of a model

F(ti) = μ + A sin[2π( f ti + φ)].

To do so, we generate three collections of light curves, each set
containing at least 500 light curves with highly skewed noise
(α = 10). To the first set of light curves, we add a high S/N
monoperiodic sinusoidal signal (S/N ∼ 180), to the second set a
low S/N monoperiodic sinusoidal signal (S/N ∼ 4), and to the
third set a superposition of 200 sinusoids with S/N between 3
and 190 (which mimics the CoRoT data of HD 180642). To esti-
mate f , we use the peak frequency in the Scargle periodogram of
each light curve. The other parameters are determined via ordi-
nary linear regression. Subsequently, the distribution of each es-
timator is compared with the theoretical formulae, as described

Fig. 3. Basic properties of the noise on the data: (upper left) average
(black) and median (grey) per sample of 1000 points. (Upper right)
log− log plot of the Scargle periodogram, gray lines are straight line
fits. The noise is mostly white, except for a low-frequency steep decay
due to correlation effects. (Lower left) Histogram of the data (black)
with a normal fit (dashed grey line) and a skewnormal fit (solid grey
line). The skewnormal distribution fits the wings better than the nor-
mal distribution. (Lower right) The residuals of the histogram fits, after
subtracting a normal fit (black) and after subtracting a skew normal fit
(grey), show that a skew normal distribution is a better estimation of the
overall noise distribution.

by Montgomery & O’Donoghue (1999) but additionally taking
correlation effects into account (Schwarzenberg-Czerny 2003),
e.g. the error estimate on the frequency is

σ̂( f ) =

√
6

Neff

1
πT
σr(ti)

a
, (2)

where σr(ti) is the standard deviation of the residuals. The ef-
fective number of observations Neff is estimated by counting
the average distance between sign changes in the residuals. In
Table 1, we present an empirical check of Eq. (2) using a simu-
lation study with more than 500 light curves of each 50 000 data
points. The empirically derived value for the parameters were
calculated as the average outcome of the simulations, while the
error was determined as the standard deviation. We conclude that
there is no discrepancy between an estimator and the real input
value in the case of a monoperiodic, high S/N signal, besides
the fact that the theoretical error estimates, such as Eq. (2), are
rather conservative. For a multiperiodic signal with low S/N, the
same pattern emerges except for the amplitudes: the estimator of
the amplitude is slightly biased towards lower values, but is still
well within the error bars. The opposite bias is found in the sig-
nals with a low S/N value, but here an extra bias is introduced
because peaks disappear in the noise for low amplitude values.

Finally, we analyse the influence of skewness on the Scargle
periodogram in a qualitatively way using a large number of sim-
ulations of skew normal distributed noise with different param-
eters. We only find some additional noise at low frequencies,
but this effect is only apparent for very high α values. A set of
heteroscedastic skew normal samples also introduces additional
noise at low frequencies, but again, the degree of heteroscedas-
ticity has to be unrealistically high compared to the case of the
CoRoT data, to have a significant influence.

In conclusion, although the deviation from uncorrelated
homoscedastic white Gaussian noise is significant for the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911782&pdf_id=3
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Table 1. Comparison between errors derived using theoretical formulas with correlation correction (input) and empirically derived estimates of
the parameters and errors (estimators).

Set Type Frequency f σ( f ) Amplitude A σ(A) Phase φ σ(φ)
Monoperiodic High S/N estimator 5.4800000 ± 0.0000004 0.000007 2.0000 ± 0.0002 0.004 +0.31703 ± 0.00003 0.0006

input 5.4800000 0.000007 2.0000 0.004 +0.31700 0.002
Monoperiodic Low S/N estimator 5.47998 ± 0.00002 0.0008 0.2153 ± 0.0001 0.003 +0.319 ± 0.002 0.06

input 5.48000 0.0007 0.0200 0.004 +0.317 0.2
Multiperiodic estimator 5.4868899 ± 0.0000003 0.000007 34 912 ± 3 66 −0.03552 ± 0.00003 0.0006

input 5.4868900 0.00001 34 918 98 −0.03551 0.003

CoRoT data, it is not dramatic: we are dealing with a slightly
right-skewed, leptokurtic distribution. The above simulations
suggest that a significant influence on parameter and error es-
timation is only noticeable for high departures of normality.
Moreover, as becomes clear in the following sections, the noise
level is inherently low compared to the analysed signals, and we
are conservative in our significance criteria. In the following, we
adopt a p value of p = 0.001 in hypothesis testing, so that an
order-of-magnitude estimate of p is important, rather than a pre-
cise value. If at all, only the correlation effects are worth taking
into account for our analysis, which is done with the method
outlined in Schwarzenberg-Czerny (2003).

3. Modelling of the CoRoT light curve

Most of the calculations concerning stellar oscillations of
βCep stars assume modes with small amplitudes, to be able to
treat multiperiodicity as a linear superposition of multiple modes
with an infinite lifetime. Fitting simple sine functions, each with
constant frequency, amplitude, and phase through data repre-
sents the simplest first-order deviations from a theoretical equi-
librium state of the star. However, when the perturbations are
not confined to the linear regime, higher order effects can only
be modelled when different sines are combined and/or harmon-
ics are allowed for, spreading the signature of a nonlinear effect
in a Fourier periodogram over a wide range of frequencies.

Several physical origins of nonlinear effects in a light curve
are plausible. These include a nonlinear response of the stel-
lar flux, leading to a distortion of the light curve (e.g., Garrido
& Rodriguez 1996), nonlinear mode coupling through resonant
interaction between different modes (e.g., Dziembowski 1982;
Buchler et al. 1997), excitation of strange-mode oscillations
in highly nonadiabatic regimes (e.g., Saio et al. 1998; Glatzel
1994), etc. In particular, nonlinear resonant mode coupling can
be distinguished from complicated beating among linear modes
by checking the occurrence of frequency and/or phase lock-
ing, which is not expected for a superposition of linear modes.
Nonlinear oscillation signatures may also include time-variable
amplitudes or phases.

Given that we are dealing with the light curve of a large-
amplitude βCep star, which is of unprecedented quality and
quantity, it is not a priori clear if a linear superposition of mode
frequencies is the best approach to treat the variability in the
CoRoT light curve of HD 180642. Therefore, we first perform
a traditional linear analysis of the light curve. Next, some non-
linear models are constructed and fitted to the data, as well as
compared with the fit by assuming linear mode frequencies.
This comparison is done by means of statistical criteria tak-
ing the number of free parameters into account. We thus de-
duce the most likely physical interpretation of the variability of
HD 180642 from the data point of view.

3.1. Superposition of linear modes

The first analysis of the CoRoT light curve of HD 180642
was done according to the traditional method, using the linear
Scargle periodogram (Scargle 1982) and consecutive prewhiten-
ing, translating to a well-known model of the form

F1(ti) = c +
nf∑
j=1

A j sin[2π( f jti + φ j)] (3)

for n f frequencies. Here, A j, f j, and φ j denote the amplitudes,
frequencies, and phases. The model was evaluated at every time
of observation ti. At each prewhitening stage, all amplitudes,
phases and the constant factor were refitted using the original
light curve. This method implies a frequency resolution of the
order of the Rayleigh limit 1/T = 0.0064 d−1, making the fre-
quency determination less precise when several frequencies are
confined to a region of this width.

It is well known that nonlinear least squares fitting in the time
domain, while leaving the frequencies, amplitudes, and phases
free, can improve seriously the fit quality compared to the case
where the frequency values are fixed to those resulting from the
periodogram, but also that the success of such a procedure is
largely dependent on the appropriate choice of good starting val-
ues, particularly when many frequencies are present. The start-
ing values we adopted for the amplitudes and phases are those
that resulted from ordinary least squares regression, while we
fixed the frequencies from the Scargle periodogram.

It was immediately clear from the first few detected frequen-
cies that the Scargle periodogram is not the optimal choice for
describing or detecting the variability of HD 180642, although
it is most certainly a powerful indicator and intuitive. At least
three harmonics of the main frequency were detected, with two
more being marginally significant. Also the second independent
frequency was best modelled with several harmonics (see upper
right panel of Fig. 4). The amplitudes of the remaining frequen-
cies are small enough to be modelled by single sines, as illus-
trated for four of them in Fig. 4. This figure also shows that the
light curve cannot be adequately modelled by only a few fre-
quencies and their harmonics.

The result of this traditional analysis is a wealth in frequen-
cies, clearly excluding a monoperiodic model. We calculated up
to 200 statistically significant frequencies (Table A.1), although
it has to be noted that “only” about 100 of them would be consid-
ered as not coming from noise when using the traditional signal-
to-noise criterion of Breger et al. (1993). However, there is no
doubt that the peaks do not come from noise for two reasons.
First, even after prewhitening 200 frequencies with a nonlinear
least squares fit, the residual amplitudes are far above the in-
strumental noise level (discussed in Sect. 2.2), which would be
expected if the signal were composed of a superposition of linear
modes. This can also be seen in Fig. 12, which we discuss later
in the text. Second, it is instructive to describe the distribution
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Fig. 4. Phase diagrams of first three independent frequencies. Grey
lines are fits, grey circles are averages of phase bins, black circles
are data points corresponding to successive prewhitening stages: (top
left) five harmonics of f1 = 5.4868(9) d−1, (top right) three harmon-
ics of f2 = 0.2991(7) d−1, (middle left to bottom right) one har-
monic of f3 = 6.324(6) d−1, f4 = 8.409(2) d−1, f5 = 7.254(7)6) d−1,
f6 = 11.811(6) d−1.

of frequencies across the spectrum, to see where all the frequen-
cies reside. If most of the detected peaks stem from noise, they
should be more or less randomly distributed across the analysed
frequency spectrum. To make the interpretation clearer, we de-
cided to prewhiten a model of the first dominant mode and its
five significant harmonics, or

F(ti) = c +
5∑

j=1

a j sin[2π( j f1ti + φ j)], (4)

where the initial harmonic fit was improved with a nonlin-
ear least squares fit, also leaving the frequency variable but
with fixed harmonic combinations. Then, a power spectrum nor-
malised by the total variance of the prewhitened data (denoted
as Z) was calculated. This means that the expected noise level
under the assumption of Gaussian white noise corresponds to
Z = 1. The small deviation from this assumption (see Sect. 2.2)
implies that Z = 1 slightly underestimates the true noise level.
Next, the periodogram was averaged using Gaussian filters with
σ1 = 0.1 d−1 (to smooth out the peaks) and σ2 = 2 d−1

to estimate the empirical noise level. The result is shown in
Fig. 5. Noticeable power excess exists around 0.3 d−1, 1.0 d−1,
6.3 d−1, 7.3 d−1, 8.4 d−1, 8.8 d−1, 9.8 d−1, 10.4 d−1, 11.0 d−1,
12.3 d−1,13.9 d−1, and, finally, to a lesser extent also 14.15 d−1.
Most of these power excess regions are not the result of one large
peak, but represent a smoothing of many closely spaced peaks in
the periodogram, e.g., in the low-frequency region (>∼1 d−1). It is
clear that the low-amplitude frequencies are not due to noise, but
is actual signal and there are almost no frequencies or any sign of
power excess in the region between 1 d−1 and 5 d−1. The higher
frequency regions (>14 d−1) are much closer to the theoretical
noise level, but are at the same time contaminated by secondary
window peaks.

As it turned out, several of the frequencies are linear com-
binations of other frequencies (Table 2). The influence of a few
frequencies is thus widespread over the entire frequency spec-
trum. This is why we consider the second model below.

3.2. Nonlinear frequency locking

Frequencies excited through nonlinear resonant mode coupling
can manifest themselves in a natural way through combination
frequencies, which may seem, at first sight, independent of the
others. Such frequency locking is one effect that can be de-
rived from the amplitude equation formalism (e.g. Dziembowski
1982; Buchler et al. 1997; Van Hoolst et al. 1998), if amplitudes
and phases are constant in time. Following this assumption, a
summary of the most obvious combination frequencies is given
in Table 2. In this table, frequency values f1, f2 and fc corre-
spond to the highest peaks in successive prewhitening stages and
Δ = |n1 f1 + n2 f2 − fc| denotes difference between the true lin-
ear combination and the found value. All combination frequen-
cies were identified following the method described in Degroote
et al. (2009). We selected only those combinations where the dif-
ference between the true combination value and the real value is
below half of the Rayleigh limit LR = 0.0064 d−1. The nonlinear
leakage can then be viewed as spreading over a wide range of
the frequency spectrum, roughly between 0 d−1 and 20 d−1.

This phenomenon of combination frequencies has been de-
tected previously in βCep stars, e.g. in νEri (Handler et al. 2004)
and in 12 Lac (Handler et al. 2006). For these stars, only posi-
tive combinations were detected. It was difficult, therefore, to
interpret these combinations, in terms of light curve distortions
either due to nonlinear response or due to nonlinear resonant
mode coupling. Indeed, both these phenomena would naturally
give rise to difference combination frequencies, as well as phase
locking, which were not detected in these two stars. Moreover,
third-order combinations were not unambiguously identified, be-
cause the amplitudes either were too low or were not excited.

Under the assumption that the combination frequencies are
real in HD 180642, the amplitudes, phases and independent fre-
quencies were refitted using the previous values as starting val-
ues, while fixing the dependent frequencies according to their
linear combination throughout the fit:

F2(ti)=c+
nf∑

k=1

Ak sin[2π( fkti + φk)]+
mf∑
l=1

Al sin[2π( flti + φl)] (5)

with

fl = n1
l f 1

l + n2
l f 2

l ,

a linear combination of two independent frequencies. It is as-
sumed that there are n f independent frequencies and m f depen-
dent frequencies.

To better describe the combination frequencies and their
origin, their relative phases and amplitudes were analysed.
Following Buchler et al. (1997) and Vuille (2000), they are de-
fined as

φr = φc − [niφi + n jφ j]

and

Ar =
Ac

AiA j

with the subindex i referring to the parent mode with the largest
amplitude, j to the parent mode with the smallest amplitude, and
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Fig. 5. Scargle periodogram (black) after prewhitening of dominant mode and its harmonics. Overlays are Gaussian convolutions with σ = 0.1 d−1

(light grey) and σ = 2 d−1 (dark grey), which are good indicators for power excess and the empirical average noise level, respectively. The
empirical noise level only coincides with the theoretical noise level for white Gaussian noise at very high frequencies.

Table 2. Parents (p1, p2) and their orders (n1, n2) of combination
frequencies fc.

ID n1 f1 (d−1) n2 f2 (d−1) fc (d−1) Δ (d−1)
d1,3(1, 1) 1 5.48689 1 6.32482 11.81164 0.00006
d1,3(−1, 1) –1 5.48689 1 6.32482 0.83794 0.00001
d1,3(2, 1) 2 5.48689 1 6.32482 17.29841 0.0002
d1,3(2,−1) 2 5.48689 –1 6.32482 4.64845 0.0005
d1,2(1, 1) 1 5.48689 1 0.29917 5.78662 0.0006
d1,2(1,−1) 1 5.48689 –1 0.29917 5.18781 0.00009
d1,2(2,−1) 2 5.48689 –1 0.29917 10.67458 0.00002
d1,2(2,−2) 2 5.48689 –2 0.29917 10.37493 0.0005
d1,2(1,−3) 1 5.48689 –3 0.29917 4.58920 0.0002
d1,4(1, 1) 1 5.48689 1 8.40918 13.89585 0.0002
d1,4(−1, 1) –1 5.48689 1 8.40918 2.92159 0.0007
d1,6(1, 1) 1 5.48689 1 6.14336 11.63039 0.0001
d1,8(1, 1) 1 5.48689 1 7.35867 12.84432 0.001
d1,10(1, 1) 1 5.48689 1 8.77086 14.25740 0.0003
d1,11(1, 1) 1 5.48689 1 6.26517 11.75173 0.0003
d5,6(1,−1) 1 7.25476 –1 6.14336 1.11216 0.0008
d5,6(2,−1) 2 7.25476 –1 6.14336 8.36870 0.0025
d4,8(1,−1) 1 8.40918 –1 7.35866 1.04985 0.0007
d7,9(1, 3) 1 7.10353 3 0.89870 9.79999 0.0003

the index c to the daughter mode. The relative phases and am-
plitudes for all candidate combination frequencies from Table 2,
except harmonics, are shown in Fig. 6.

To make the discussion more readable, we denote each
daughter mode by a unique designation,

di, j(ni, n j),

where i and j are indices of the largest and smallest ampli-
tude parent modes, respectively, (the higher this index, the lower
the amplitude), and ni, n j are the corresponding coefficients in
the linear combinations (Table 2). Sum frequencies are distin-
guished from differences by the sign of the coefficients. Several
interesting features appear:

1. There are six daughter frequencies that have four proper-
ties in common: they are a sum of the dominant mode with
another frequency, they cluster around the same relative
phase (∼0.15), they have comparable relative amplitudes,

and they have the same first-order coefficients (ni = n j = 1):
d1,3(1, 1), d1,4(1, 1), d1,6(1, 1), d1,8(1, 1), d1,10(1, 1), and
d1,11(1, 1).

2. A similar clustering around a common relative phase is
visible for 6 differences: d4,8(1,−1), d1,4(−1, 1), d1,3(2,−1),
d1,2(1,−1), d5,6(2,−1), and d1,2(2,−2), although they have
different coefficients and different relative amplitudes.

3. Around the second harmonic of the dominant mode, a spac-
ing with ΔF = 0.29917 d−1 is clearly visible. The daugh-
ter frequencies d1,2(2,−1), d1,2(2,−2) almost have the same
relative amplitudes, and are both found in two consecutive
prewhitening stages.

4. The daughter frequency d1,3(1−1) has a relative phase of π/2.

The result for the fit using model F2 is provided in Table A.2
while a summary diagram of the independent and combination
frequencies is shown in Fig. 7.

In the case of HD 180642, we hence do see difference com-
bination frequencies, in contrast to the cases of the two large-
amplitude βCep stars νEri (Handler et al. 2004) and 12 Lac
(Handler et al. 2006). These difference frequencies are still well
above 0.1 d−1, and are thus in the regime of white noise (see
Fig. 3) Such low combination frequencies are expected to oc-
cur with similar amplitudes as the sum combinations, for both
the nonlinear distortion model and a nonlinear resonant mode
coupling model. While we see more sum frequencies than dif-
ferences, we do reach the regime of g-mode frequencies through
several combinations for HD 180642. We also found higher or-
der combinations here, up to order four (see Table 2), than for
νEri and 12 Lac.

We note from Fig. 6 that four combination frequencies have
a much higher Ar-value than the others. This is simply because
these are the four combinations not involving the dominant mode
(hence the denominator in the definition of Ar is much smaller).
Furthermore, the relative amplitudes of the combinations involv-
ing the dominant mode cover a range of a factor ten and the
phases cover the entire range [−0.5, 0.5], although several rela-
tive phases of difference frequencies are equal within the error
bars, and similarly for the sum frequencies. The largest relative
amplitudes all occur for a sum frequency due to a three-mode
resonance model involving the dominant mode. The difference
frequencies of the same three modes, if they occur, all have lower
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Fig. 6. (Top) Relative phase as a function of frequency. Error bars
denote 3σ level. The parent modes are indicated by vertical lines.
Horizontal lines denote a π/2 phase lag and lead with respect to the
parent modes. Sum combinations are filled circles, difference combi-
nations are open circles. (Middle) Relative amplitudes as a function of
frequency. (Bottom) Relative amplitude as a function of relative phase.

relative amplitude. We interpret this as due to nonlinear reso-
nant mode locking, as a nonlinear distortion would not privilege
larger amplitudes for sum or difference frequencies.

In principle, the relative amplitudes of the resonantly locked
frequencies can help to constrain the mode degrees, because
the geometric cancelling effect is different for different degrees.
Unfortunately, we cannot use the relative amplitude values to de-
rive the mode degrees, because all large-amplitude, three-mode
resonances involve the dominant radial mode, which does not
imply geometric cancelling, and we have no other information
on the degrees of the parent frequencies.

3.3. Time-dependent amplitudes and phases

In the previous section, we assumed the amplitudes and phases to
be constant in time. However, the amplitude equation formalism

also allows for solutions where this is not the case (Buchler et al.
1997). Amplitude and phase modulations may occur, which can
be (multi)periodic or chaotic. The light curve of HD 180642 as
measured with CoRoT is of such high quality that it becomes
possible to detect and to model these variations through changes
in the highly sampled phase profile. Although a sine function
with five harmonics is a good fit in the phase diagram (Fig. 4),
it is also clear from the same figure that this model is only an
“average” model; in fact, the fit is not optimal for modelling a
particular phase. Some phases can be modelled adequately with
three harmonics, others need four, etc. Moreover, the minima
and maxima seem to oscillate around an equilibrium value.

To quantify this time-dependent behaviour, a harmonic fit
was calculated for every covered phase of the main frequency.
The number of harmonics to be used is determined from the
χ2 statistic of the data with respect to the model. The number of
significant harmonics was taken as the lowest one that achieves
a χ2 < 1.5. This number varies mainly between three and four,
with few exceptions.

We quantify the complexity of each phase profile by the ratio
of the harmonic’s amplitudes compared to the main amplitude.
The higher this ratio, the more significant the specific harmonic.
Also, from each fit, we extract the fitted constant as an indica-
tor for long-term trends. Finally, peak-to-peak variations in the
phases are calculated. Using these methods, we finally arrive at
an adapted version of Eq. (4):

F3(ti) = c(ti) +
5∑

j=1

a j(ti) sin[2π( j f1ti + φ j(ti))], (6)

with

c(ti) = C +
∑

k

Ac
k sin[2π( f c

k ti + φ
c
k)],

a j(ti) = A +
∑

l

A
aj

l sin[2π( j f
a j

l ti + φ
aj

l )],

φ j(ti) = Φ +
∑

m

A
φ j
m sin[2π( j f

φ j
m ti + φ

φ j
m )]·

For clarity, we first examine what the linear interpretation of this
model would be. The simple model with k = 0 and j, l,m = 1
can be linearised with the assumption that Aφ ≤ 1. Violation
of this assumption only influences the amplitude determination.
Linearising (6) gives

F′3(ti) = A sin(Ft + Φ)

+ Aa/2 sin[(F − f a)ti + (Φ − φa + π/2)]

+ Aa/2 sin[(F + f a)ti + (Φ + φa − π/2)]

+ AAφ/2 sin[(F + f φ)ti + (Φ + φφ)]

+ AAφ/2 sin[(F − f φ)ti + (Φ − φφ + π)]
+ AaAφ/4 sin[(F + f a − f φ)ti + (Φ + φa − φφ + π/2)]

+ AaAφ/4 sin[(F − f a − f φ)ti + (Φ − φa − φφ − π/2)]

+ AaAφ/4 sin[(F+ f a+ f φ)ti+(Φ+φa+φφ−π/2)], (7)

or when f a = f φ

F(ti) = A1 sin(Ft + Φ1)

+ A2 sin[(F − f a)t + Φ2]

+ A3 sin[(F + f a)t + Φ3] (8)
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Fig. 7. Summary of independent (full lines) and combination frequencies (dashed lines) for the nonlinear frequency locking model F2 described
in the text. The frequencies detected in the ground-based photometry and spectroscopy by Briquet et al. (2009) are indicated by closed and open
triangles, respectively.

Fig. 8. Periodograms and phase diagrams for the time-variable amplitude ( f ai
1 ) and phase ( f φi

1 ) of the first four harmonics of the dominant mode.
Because the fourth harmonic was not detected in every phase, there are less points in the lower panels for which the Nyquist frequency is also
lower than for the other harmonics.

with, under the assumption that Aφ � A,

A2
1 = A2 +

(
AaAφ

4

)2

+
AAaAφ

2
cos(φφ − φa − π/2) ≈ A2,

Φ1 = arctan

⎛⎜⎜⎜⎜⎜⎝ A sinΦ + AaAφ

4 sin(Φ + φa − φφ + π/2)

A cosΦ + AaAφ
4 cos(Φ + φa − φφ + π/2)

⎞⎟⎟⎟⎟⎟⎠ ≈ Φ.
The results of the frequency analysis for the amplitudes, phases,
and constants for this model assumption can be found in
Tables A.3 to A.10. The analysis of the first frequency of the
time-dependent amplitude and phase for each harmonic is shown
in Fig. 8.

With this last expansion in mind, we can use the results
of the frequency analysis of the amplitudes and phases to pre-
dict the occurrence of spurious frequencies, actually originating
from the linear expansion of the nonlinear model, and thus not
physically inherent to the star. We performed this exercise for
the primary component of the main radial mode and its har-
monics. If we assume that the primary component f1 and its
harmonics have a variable amplitude and phase with frequency
f = 0.8379 d−1, then we can already explain several of the ob-
served frequencies (see Table 3). Obviously, not all predicted
frequencies can be discovered. After fitting the light curve with
this model and inspecting the periodogram, we can see that ad-
ditional secondary peaks are introduced that are not observed.
When taking more frequencies into account, at least some of
the secondary peaks seem to cancel out. This motivates us to
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Table 3. Selection of predicted versus observed frequencies under the
assumption of time-dependent amplitudes and phases (model given by
Eq. (6)).

Component Secondary Spurious frequency Error
f1 0.8379 6.3248 Observed
f1 –0.8379 4.6490 Observed

2 f1 0.8379 11.8168 Observed
2 f1 –0.8379 10.1359 –
3 f1 0.8379 17.2986 Observed
3 f1 –0.8379 10.1359 –

Component Secondary Spurious frequency Error
f1 1.7678 7.2546 Observed
f1 –1.7678 3.7191 –

2 f1 1.7678 12.7412 Observed
2 f1 –1.7678 9.2060 –
3 f1 1.7678 18.2285 –
3 f1 –1.7678 14.6928 –

Component Secondary Spurious frequency Error
f1 2.5650 8.0519 –
f1 –2.5650 2.9219 Observed

2 f1 2.5650 13.5388 –
2 f1 –2.5650 8.4088 Observed
3 f1 2.5650 19.0257 –
3 f1 –2.5650 13.8957 Observed

construct several time-dependent amplitude models and to com-
pare the fits. From Tables A.3 to A.10, we select the most prob-
able frequencies and let the amplitudes and phases vary accord-
ingly. First, only one frequency is used. Gradually more frequen-
cies are added, until we arrive at a maximum of four frequencies
determining the amplitude time variability.

The two frequencies 0.836 d−1 and 1.767 d−1 clearly stand
out: the amplitudes and phases oscillate on this time scale, but
they are also found when applying model F1 given by Eq. (3),
which means that the “entire” light curve is also oscillating at
the same rate. This is confirmed by analysing the residuals after
removing the constructed models, and both of the frequencies
are recovered.

Despite the success of these time-dependent amplitude and
phase models to explain several peaks in the periodogram, we
have to compare them more rigorously with the models of the
forms Eqs. (3) and (5), which is the topic of the next section.

3.4. Model evaluation

To compare the different models with each other and determine
their goodness-of-fit, we computed four evaluation statistics:
the variance reduction (VR), both Akaike’s information crite-
rion (AIC) and the Bayesian information criterion (BIC) in the
time domain, and the power reduction (PR) in the frequency do-
main. The power reduction is computed with respect to the orig-
inal periodogram by numerical integration of the model’s ampli-
tude periodogram. The AIC is defined as

AIC = 2k − 2 lnLmax, (9)

where Lmax is a maximum likelihood estimator (MLE), n the
effective number of observations, and k the number of free pa-
rameters in the model. Under the assumption of Gaussian white
noise, we can insert the MLE of the noise variance, σ̂i

2 =
RSS/n with RSS the residual sum of squares. Criterion (9)
then becomes

AIC = n ln(RSS/n) + 2k + n.

Fig. 9. Comparison of the AIC (black) and BIC (grey) for the Scargle
analysis of model F1. The lower the value, the better the fit. The abso-
lute values have no meaning, so the AIC and BIC cannot be compared.
Clearly the BIC gives a higher penalty for introducing extra parameters
than the AIC. From frequency 127 on, the BIC discourages the use of
additional sines in the model fit (inset is a zoom).

The AIC can be calculated for every model, but is only relevant
in comparisons: the lower the AIC, the better the model.

Despite the AIC discouraging the use of too many free pa-
rameters (unlike the variance and power reduction), the BIC is
more suitable when we want to stress the importance of sim-
pler models over more complicated ones and thus increase the
penalty for introducing new parameters. The BIC is defined as

BIC = −2 lnLmax + k ln n. (10)

Analogous to the AIC, we can simplify this to

BIC = n ln (RSS/n) + k ln n.

The BIC is also only relevant in comparisons, where again the
lower the BIC, the better the model. We choose to use the BIC
for our model selection rather than the criteria, because we want
to favour simple, physically appropriate models with the fewest
possible degrees of freedom. The BIC is the most conserva-
tive criterion in this respect, because it requires that the gain in
variance reduction must be worth the cost of introducing extra
parameters.

First, we computed the AIC and BIC for all prewhitening
stages, and compared them to a model with only the first fre-
quency prewhitened. Indeed, given the richness of the frequency
spectrum, it could well be that not all variability can be modelled
adequately with sine functions. Of course any type of variability
can be considered as such, but this may result in using too many
parameters. As can be seen in Fig. 9, the BIC sets the optimal
number of sines to use for model fit F1 to 127, so introducing
3 additional parameters is not longer worth the gain in variance
reduction.

From Table 4, we can see that all statistics prefer the model
where the combination frequencies were fixed, except for the
variance reduction. That the latter is slightly worse is no sur-
prise, as there are fewer free parameters with fixed frequencies.
For each alternative model, Eqs. (5) and (6) separated by hori-
zontal lines, the closest linear (original) model Eq. (3) is com-
puted, and fitted through nonlinear least squares.

All versions of the model F3 described by Eq. (6) lead to a
worse fit to the data than similar models F1 (in the sense of which
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Table 4. Model evaluation† .

Model AIC (%) BIC (%) VR (%) PR (%) k
Eq. (5), fixed comb 94.010 94.065 97.755 25.50 78
Eq. (3), Scargle freqs 94.023 94.171 97.761 25.49 100
Eq. (3), NLLS freqs 94.021 94.169 97.762 25.49 100
Eq. (6), 1 freq 95.417 95.378 96.873 30.81 40
Eq. (3), Scargle freqs 95.405 95.314 96.872 30.87 28
Eq. (3), NLLS freqs 95.404 95.314 96.872 30.85 28
Eq. (6), 2 freqs 95.228 95.255 97.019 30.14 58
Eq. (3), Scargle freqs 95.204 95.130 97.017 30.24 34
Eq. (3), NLLS freqs 95.204 95.130 97.017 30.22 34
Eq. (6), 3 freqs 94.887 97.974 97.255 28.65 76
Eq. (3), Scargle freqs 94.837 94.783 97.263 28.84 43
Eq. (3), NLLS freqs 94.837 94.783 97.263 28.82 43
Eq. (6), 4 freqs 94.746 94.901 97.355 27.99 94
Eq. (3), Scargle freqs 94.687 94.664 97.361 28.29 52
Eq. (3), NLLS freqs 94.687 94.664 97.361 28.29 52

† The best model according to the four considered statistics are empha-
sised in bold.

peaks they can explain) of the form of Eq. (3). The differences
are small in most cases, but there is a difference nonetheless.
This has already been foreseen in Table 3 because not all pre-
dicted peaks are detectable, so the fit introduces spurious peaks.
This effect can also be deduced from the PR: although there are
more parameters, the fits do not explain the periodogram as well
as simpler models.

4. Time-frequency behaviour of parent
and combination frequencies

The enormous complexity of the power spectrum of HD 180642
as measured with CoRoT and many of the previous remarks raise
questions about the stability of the observed and treated modes in
terms of amplitudes and frequencies. Nonlinear resonant mode
coupling may give rise to variability in the frequencies and am-
plitudes over time (Buchler et al. 1997). Given that this is sta-
tistically the best model and also physically the more plausible
one, we focus on the modes listed in Table 2, by performing a
time-frequency analysis for every prewhitening stage where the
frequency under consideration is the dominant one.

A logical approach is to perform a wavelet analysis, adapted
to the unequidistant signature of the dataset at hand (Foster
1996). In a data set with a low-enough noise level, one can also
compare the shape of the detected peak p( f ) in the Fourier peri-
odogram with the theoretical shape of an infinitely stable mode
of frequency f0:

p( f ) =

√(
sin[πT ( f − f0)]
πT ( f − f0)

)2

,

with T the total time span. This method has the advantage of
concentrating on the most localized area possible in frequency
space. On the downside, a peak not fitting the expected shape
can also mean that there is a beating pattern on a longer time
scale that is not resolved well by the data sets. A third method of
investigating stability we applied is simply to cut the entire time
series in half, and do an independent traditional Scargle analysis
on both parts.

The results for some of the frequencies in Table 2 are shown
in Fig. 10, where the window for the wavelet transforms was
taken as 40 days around the targeted frequencies. The domi-
nant mode frequency and its first harmonic do not change during

the entire CoRoT time series. Comparing the shapes of all the
other peaks (some of which shown in the left panels of Fig. 10)
leads to the conclusion that some frequencies do not change
their behaviour while others do. This is particularly the case for
d4,8(1,−1) ≈ 1.05 d−1. The wavelet analysis hints at changes in
the amplitudes of many of the modes, but it does not allow thor-
ough quantitative conclusions. Strong amplitude changes have
also been found in the CoRoT data of the pulsating Be star
HD 49330 (Huat et al. 2009).

5. Long-term frequency evolution of the dominant
mode

The Hipparcos satellite observed HD 180642 from March 12,
1990 for almost three years. Since then, 191 observations assem-
bled with the photomultiplier P7 attached to the 0.7 m Swiss tele-
scope at La Silla and to the 1.2 m Mercator telescope at La Palma
have been added. Moreover, we downloaded 310 archival ASAS
data points (Pigulski & Pojmański 2008). This brings the total
time span of observations to 6814 days. The characteristics of
the different datasets, as well as the first frequency value deter-
mined for each of these data sets, are summarised in Table 5
and Fig. 11. All first-frequency values were also calculated via
a PDM procedure (Stellingwerf 1978), a multiharmonic peri-
odogram (Schwarzenberg-Czerny 1996) and a nonlinear least
squares fit with 5 (fixed) harmonics, and were consistent with
each other within 1σ.

The estimator (2) of the error on the frequency suggests that
the precision scales simply with the total time span T , which
would hypothetically lower the frequency error by several mag-
nitudes in our case if the datasets were to be combined. However,
we have to take the extremely biased distribution of observa-
tions in time into account. More than 99% of the observations
were made during a time span only covering less than 3% of
the total time span. A natural measure for the uncertainty on the
frequency is given by the width of the peak in the window func-
tion around f = 0. When adding only 83 datapoints to nearly
half a million measurements, only tiny “wobbles” are added to
the window function, and the overall shape of the main peaks
is unaltered.

Instead of combining the datasets to model the stability of the
frequency, we treated the datasets separately and test that the fre-
quency derived from Hipparcos measurements are equal to the
one derived from the CoRoT mission, within estimated errors. In
the CoRoT dataset, correlation effects were taken into account.
To determine how accurate the error estimation is in the case of
the Hipparcos data, we randomly drew ∼7000 samples from the
CoRoT dataset, using the (scaled) time gaps from the Hipparcos
measurements, to arrive at a comparable number of datapoints
(≈100) in each sample. We derived an empirical frequency er-
ror estimate of σ̂ f = 0.0002 d−1, while formula (2) gave us a
conservatively overestimated average value of σ̂ f = 0.001 d−1.

If the frequencies for the dominant mode from Hipparcos
and CoRoT are estimates for a common mean f̄ , then the maxi-
mum likelihood estimator for f̄ is f̄ = 5.48691 d−1, with a prob-
ability of 0.6%. These facts suggest that the frequency of the
dominant mode is not the same in these two data sets, but has
instead decreased. From the datasets in Table 5, it is impossible
to determine whether the frequency change is gradual or sud-
den, so we refrain from any physical interpretation, although it
would be naturally explained as a frequency decrease due to the
approaching of the star to the end of the core-hydrogen burning,
as suggested by the low log g of 3.45 dex.
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Fig. 10. Search for changes in the frequency or amplitude behaviour (in % of mean flux) for some of the frequencies in Table 2. Left panels compare
the observed shape of the Scargle peak (black) with the theoretical infinitely stable peak (gray), middle panels show the result of a wavelet analysis,
right panels show the comparison between the peak as calculated only using the first half of the time series (black) and the peak using only the
last half (gray). From top to bottom: d1,3(1, 1) shows stability of the frequency, but a decrease in amplitude towards the end of the time series;
f7 shows signs of a decrease in both amplitude and frequency; d1,4(1, 1) proves to be relatively stable; d4,8(1,−1) shows a huge rise in amplitude
from virtually non existent to highly significant; d1,2(1, 1) could evolve slowly in frequency.
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Table 5. Datasets described in this paper and frequency values for the dominant mode determined from a Scargle periodogram (Scargle 1982)†.

t0 (y) T (d) n f (d−1) σ f (d−1) f (μHz)
Hipparcos 1990 1091 83 5.4871 0.00006 63.508(2)
Swiss 70 cm/P7 1997 187 20 5.4869 0.0002 63.50(5)
Mercator/P7 2002 1184 171 5.48693 0.00001 63.506(1)
ASAS 2001 2798 310 5.48691 0.00001 63.505(9)
CoRoT/SISMO 2007 156 379 785 5.48689 0.00003 63.505(7)
All 1990 6814 380 369 5.48694 0.00003 63.506(3)

†: t0: starting time of observations, T : total timespan, n: number of measurements, f : frequency value, σ f : error on frequency.

Fig. 11. Frequency determinations of ground- and space-based obser-
vations (left to right: Hipparcos, Swiss 70 cm, Mercator, ASAS, and
CoRoT). Vertical bars denote 2σ error in frequency, corrected for cor-
relation. Horizontal bars denote time span for the frequency determina-
tion, circles denote midpoint of observations.

6. Residual power

As already hinted at above when discussing the three mod-
els F1, F2, and F3, we have not yet reached the noise level when
considering all the 127 frequencies listed in Table A.1, or the
more restricted lists belonging to models F2 and F3 given in
Tables A.9 to A.10. Figure 12 shows the residual periodograms
for each of the three considered models, where we took the time-
variable amplitude and phase model F3 allowing for one fre-
quency to describe this amplitude variability as this leads to the
best BIC (Table 4), but the result is similar for the three other
cases of this model. As can be seen, all three models lead to
residual power excess, although at a very different level. Further
prewhitening according to model F1 was done (see Table A.1
which lists up to 200 frequencies) but is, according to us, not
very useful for any physical interpretation of the frequencies.

Recently, Belkacem et al. (2009) has interpreted the resid-
ual power of HD 180642 after prewhitening 91 frequencies with
a model description as F1, in terms of stochastically excited
modes due to turbulent convection. They derived a large spac-
ing Δν = 13.5 μHz or twice this value, from the residual power
spectrum, excluding the frequencies below 130 μHz (11.23 d−1)
and above 300 μHz (26 d−1). We refer to their paper for a physi-
cal description and interpretation of such modes.

Our model comparison shows that the residual power is quite
different for our preferred physical model F2 than for model F1
considering 127 frequencies. Even though model F1 leads to

lower residual power, it is not as statistically good as model F2
if one takes the difference in degrees of freedom into account.
Also, “natural” combination frequencies occur among the found
frequencies, of which several are phase-locked. One may then
wonder how frequencies that are resonantly excited and that
may show time-dependent behaviour can be distinguished from
stochastically excited ones, when they occur in the same fre-
quency regime. In any case, the frequencies involved in phase
locking are not expected to have a stochastic nature, as they
would have random phase behaviour. Therefore, all the combi-
nation frequencies whose phases are locked (6 sum and 6 dif-
ference frequencies – see Fig. 6) are not likely to stem from a
stochastic process. They cover almost the entire range in fre-
quency covered in Fig. 7.

We estimated the large separations for the three resid-
ual power spectra shown in Fig. 12, assuming them to be
caused by stochastically excited oscillations (p-modes), by us-
ing échelle diagrams with extracted frequencies and autocorre-
lations (Christensen-Dalsgaard 1988). We thus find, in the fre-
quency range from 50 μHz to 300 μHz, Δν1 = 12.1 ± 0.2 μHz
for the residuals of model F1, Δν2 = 12.9± 0.2 μHz for the resid-
uals of model F2 and Δν3 = 18.0 ± 0.2 μHz for the residuals of
model F3. The autocorrelation diagram for the residuals of the
models also shows a smaller bump around 24 μHz and 36 μHz.
Assuming � = 1 modes as the cause of Δν1, Δν3 could be inter-
preted as the distance between � = 0 and � = 1 modes, but we
regard this as a tentative result that needs further confirmation.

The detection of solar-like oscillations in this βCep star as
an explanation of the residual excess power seems to be robust
against the various models for the prewhitening of the κ-driven
and resonantly excited modes. The value of the large spacing is,
however, light-curve model dependent.

7. Discussion and conclusion

The available CoRoT data of the βCep star HD 180642 pro-
vided us with a wealth of information. Beyond the previously
known dominant mode, many more frequencies are detected.
A large fraction of those does not change their behaviour dur-
ing the time span of the CoRoT data, while others do. Light
curve modelling using different underlying functional assump-
tions led us to prefer a model based on nonlinear mode inter-
action, with 11 independent frequencies and 22 three-resonance
combinations (among which some harmonics) covering the fre-
quency range [0.3, 22] d−1. This model selection was based on
statistical criteria, without considering physical arguments a pri-
ori. Nine of the independent frequencies of this model are in the
range expected for βCep stars, i.e., between 5 and 9 d−1. This
model is also the most logical one in terms of physical inter-
pretation. Indeed, the nonlinear frequency locking is a natural
consequence of the large amplitude of the dominant radial mode
of the star. Five of these 33 frequencies are in the regime of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911782&pdf_id=11
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Fig. 12. Residual periodograms for each of the three prewhitened models F1 , F2 and F3 described in the text.

high-order g modes with frequencies below 2 d−1 for stellar
models appropriate to the star. The relative amplitudes of the
coupling frequencies differ by an order of magnitude and seem
to point towards nonlinear resonant mode excitation and phase
locking for several of these frequencies, particularly for those in
the g-mode frequency regime.

Our observational results constitute a fruitful starting point
for detailed seismic modelling of this star, particularly if some
of the frequencies derived here could be identified. An extensive
ground-based observing campaign has been organised with that
goal and is discussed in Briquet et al. (2009). As indicated in
Fig. 7, it leads to fully consistent frequency results with those
found here, with 9 high-amplitude frequencies in common.
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