# ABUNDANCES OF MASSIVE STARS SOME RECENT DEVELOPMENTS

Thierry Morel, University of Liège

### **Chemical composition of nearby OB stars: solar?**

- Modelling of pulsations and inferences on internal structure
- Constraints on Galactic chemical evolution models

## **Deep mixing in OB stars**

- Theoretical understanding of mixing processes
- Impact on evolution off the main sequence

# Getting the abundances

#### **Atmospheric parameters**

Teff: photometry/ionization balance logg: fitting wings of Balmer lines microturbulence: no dependence between metal abundances and EWs

**Model atmospheres and line-formation codes** 

Line-blanketed model atmospheres (LTE or NLTE)

**NLTE line-formation treatment** 

- Stars with winds: unified codes (CMFGEN, FASTWIND)
- Stars without winds: plane-parallel codes (TLUSTY, DETAIL/SURFACE)

#### Atomic data

Model atom Oscillator strengths, ...

**Techniques for abundance determination** Curve of growth/spectral synthesis

### **Chemical composition of nearby OB stars: the data**

#### **Selection criteria:**

- Only single stars
- No supergiants to minimize evolutionary effects
- Only stars within ~1 kpc
- Only NLTE studies using line-blanketed model atmospheres
- Only studies based on high-resolution optical spectra
- Carbon abundances solely based on 'problematic' lines excluded (e.g. C II 4267)

|  | Data from ~10 studies: heterogeneous, |
|--|---------------------------------------|
|  | BUT general trends emerging           |



#### **Chemical composition of nearby OB stars: the data**



Stars with abundance data (CNO, Mg, Al, Si, S or Fe) ~200 objects

Stars with CNO data ~100 objects

#### **Chemical composition of nearby OB stars: Galactic enrichment**



#### **Chemical composition of nearby OB stars: the Sun is 'normal'**



#### **Chemical composition of nearby OB stars: solar?**



#### **Chemical composition of nearby OB stars: solar?**



#### **Chemical composition of nearby OB stars: solar?**



#### **Chemical composition of nearby OB stars: neon**



Cunha et al. (2006) Dworetsky & Budaj (2000) Hempel & Holweger (2003) Kilian (1994) Morel & Butler (2008) Sigut (1999)

Solar 3-D Solar 1-D Value necessary to solve the 'solar model problem'

#### **Deep mixing in OB stars: CNO**



### **Deep mixing in OB stars: CNO**



N-normal stars: [N/C]<-0.3 dex N-rich stars: [N/C]>-0.3 dex

#### **Deep mixing in OB stars: a link with magnetic fields?**

---- Solar values



Morel et al. (2008)

#### Deep mixing in OB stars: confrontation with models



#### **Deep mixing in OB stars: confrontation with models**

#### Only a modest decrease of the rotational velocities of B stars from ZAMS to TAMS



Meynet & Maeder (2003)

#### **Deep mixing in OB stars: Galaxy**



#### **Deep mixing in OB stars: Galaxy**



**Deep mixing in OB stars: Galaxy** 



#### **Deep mixing in OB stars: LMC**



#### **Deep mixing in OB stars: He**



# Conclusions

#### **Chemical composition of nearby OB stars**

Abundance studies strongly biased towards early B-type stars: data for O stars and late B-type stars (diffusion effects) desirable
Metal abundances of OB stars likely underestimated: Z~0.010

### **Deep mixing in OB stars**

- He, B, CNO: powerful probes of mixing processes
- Clear evolutionary effects
- Two populations not explained by rotational mixing:
  - \* Slowly-rotating, N-rich dwarfs: mixing efficiency underestimated? stronger loss of angular momentum than expected? magnetic fields?
  - **\*** Fast-rotating stars with normal nitrogen in LMC (and in the Galaxy?)

#### • Needed in the future:

- \* Establishing the nature of these two subsamples
- **\*** Abundance data for fast rotators