Chemical Equilibria and pH Calculations

Guy Munhoven
Institut d'Astrophysique et de Géophysique (B5c Build.)
Room 0/13
eMail: Guy.Munhoven@ulg.ac.be
Phone: 04-3669771
14th February 2024

Plan

- Chemistry of the carbon dioxide system
- Chemical equilibria
- pH scales
- Conservative state variables: dissolved inorganic carbon and alkalinity
- Carbonate: calculation

Processes and Exchange Fluxes

Guy Munhoven

Carbonate Chemistry

Dissolution of atmospheric CO_{2} in water

$$
\begin{aligned}
\mathrm{CO}_{2(\mathrm{~g})} & \rightleftharpoons \mathrm{CO}_{2(\mathrm{aq})} \\
\mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \\
\mathrm{H}_{2} \mathrm{CO}_{3} & \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
\mathrm{HCO}_{3}^{-} & \rightleftharpoons \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}
\end{aligned}
$$

Actually

$$
\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{CO}_{2(\mathrm{aq})}\right]} \ll
$$

For practical usage, we define

$$
\mathrm{CO}_{2(\mathrm{aq})}^{*}=\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2(\mathrm{aq})}
$$

Carbonate Chemistry

Equilibrium system actually used:

$$
\begin{aligned}
\mathrm{CO}_{2(\mathrm{~g})} & \rightleftharpoons \mathrm{CO}_{2(\mathrm{aq})}^{*} \\
\mathrm{CO}_{2(\mathrm{aq})}^{*}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
\mathrm{HCO}_{3}^{-} & \rightleftharpoons \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}
\end{aligned}
$$

Equilibrium relationships

$$
\begin{aligned}
K_{H}^{*} & =\frac{\left[\mathrm{CO}_{2 \text { (aq) }}^{*}\right]}{f_{\mathrm{CO}}} \quad \text { (Henry's Law) } \\
K_{1}^{*} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]} \\
K_{2}^{*} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}
\end{aligned}
$$

pK Values of the Equilibrium Constants

- pK $:=-\log _{10}(K)$, by analogy with $p H:=-\log _{10}\left(\left[\mathrm{H}^{+}\right]\right)$
- Consider, e. g., the equilibrium between $\mathrm{CO}_{2(\mathrm{aq})}$ and HCO_{3}^{-}in a solution containing dissolved CO_{2} :

$$
K_{1}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]}
$$

When $\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]=\left[\mathrm{HCO}_{3}^{-}\right](\rightarrow$ equivalence point $)$, we have

$$
K_{1}^{*}=\left[\mathrm{H}^{+}\right] \quad \Leftrightarrow \quad p K_{1}^{*}=p \mathrm{H}
$$

\Rightarrow equivalence points located at the $p K$ values

Stoichiometric vs. Thermodynamic Constants

- $K_{\mathrm{H}}^{*}, K_{1}^{*}$ and K_{2}^{*} are stoichiometric constants as they link concentrations
- The corresponding thermodynamic equilibrium constants K_{H}, K_{1} and K_{2}
- link activities instead of concentrations
- only depend on temperature and pressure
- have been determined for a large number of reactions
- The activity $\{A\}$ and the concentration $[A]$ of a chemical species A are related by the activity coefficient γ_{A}

$$
\{\mathrm{A}\}=\gamma_{\mathrm{A}}[\mathrm{~A}]
$$

- γ_{A} depends on the chemical composition of the solution

Chemical Composition of Seawater

Solute	mol
Na^{+}	0.46900
Mg^{2+}	0.05282
Ca^{2+}	0.01028
$\mathrm{~K}^{+}$	0.01021
Sr^{2+}	0.00009
Cl^{-}	0.54588
SO_{4}^{2-}	0.02823
HCO_{3}^{-}	0.00186
Br^{-}	0.00084
CO_{3}^{2-}	0.00019
$\mathrm{~B}(\mathrm{OH})_{4}^{-}$	0.00008
$\mathrm{~F}^{-}$	0.00007
$\mathrm{~B}(\mathrm{OH})_{3}$	0.00033
After Millero (1982)	

Activity Coefficients

- Influence of activity coefficients not negligible in seawater

lon	γ
Na^{+}	0.666
Cl^{-}	0.668
H^{+}	0.590
HCO_{3}^{-}	0.570
CO_{3}^{2-}	0.039

Conditions:
seawater at $25^{\circ} \mathrm{C}$ and $S=35$
After Zeebe and Wolf-Gladrow (2003, Tab. 1.1.3)

- Two ways to address this complication
- calculation of γ values from solute interaction models \Rightarrow difficult and tedious
- empirical determination of stoichiometric coefficients including effets of γ, as a function of temperature, pressure and salinity \Rightarrow adopted in practice
- Classically $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
- However, even in freshwater solutions, free H^{+}ions present only in negligible amounts: most are complexed by water molecules
- In seawater, this complexing extends to other solutes as well
- In seawater, it would be best to adopt $p \mathrm{H}=-\log _{10}\left\{\mathrm{H}^{+}\right\}$
\Rightarrow useless as $\left\{\mathrm{H}^{+}\right\}$cannot be individually measured
- Definition of operational pH scales that take into account the presence of extra ions able to release H^{+}ions
- Motivations essentially experimentally oriented

pH Scales: Free, Total, ...

- Free Scale - based upon $\left[\mathrm{H}^{+}\right]_{\mathrm{F}}$, the concentration of free and hydrated H^{+}ions
- Total Scale - takes into account the role of HSO_{4}^{-}:

$$
\begin{aligned}
p \mathrm{H}_{\mathrm{T}} & :=-\log _{10}\left[\mathrm{H}^{+}\right]_{\mathrm{T}} \\
{\left[\mathrm{H}^{+}\right]_{\mathrm{T}} } & :=\left[\mathrm{H}^{+}\right]_{\mathrm{F}}\left(1+S_{\mathrm{T}} / K_{\mathrm{S}}\right)
\end{aligned}
$$

where

- $S_{\mathrm{T}}=\left[\mathrm{SO}_{4}^{2-}\right]+\left[\mathrm{HSO}_{4}^{-}\right]$is the total sulphate concentration
- $K_{\mathrm{S}}=\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{F}}\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]}$is the dissociation constant of HSO_{4}^{-}
- $\left[\mathrm{H}^{+}\right]_{\mathrm{T}} \simeq\left[\mathrm{H}^{+}\right]_{\mathrm{F}}+\left[\mathrm{HSO}_{4}^{-}\right]$

pH Scales: ... Seawater

- Seawater Scale - takes into account the roles of HSO_{4}^{-}and HF:

$$
\begin{aligned}
p \mathrm{H}_{\mathrm{SWS}} & :=-\log _{10}\left[\mathrm{H}^{+}\right]_{\mathrm{SWS}} \\
{\left[\mathrm{H}^{+}\right]_{\mathrm{SWS}} } & :=\left[\mathrm{H}^{+}\right]_{\mathrm{F}}\left(1+S_{\mathrm{T}} / K_{\mathrm{S}}+F_{\mathrm{T}} / K_{\mathrm{F}}\right)
\end{aligned}
$$

where

- S_{T} and K_{S} as for the Total Scale
- $F_{\mathrm{T}}=[\mathrm{HF}]+\left[\mathrm{F}^{-}\right]$is the total concentration of fluorine
- $K_{\mathrm{F}}=\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{F}}\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$ is the dissociation constant of HF
- $\left[\mathrm{H}^{+}\right]_{\mathrm{SWS}} \simeq\left[\mathrm{H}^{+}\right]_{\mathrm{F}}+\left[\mathrm{HSO}_{4}^{-}\right]+[\mathrm{HF}]$

Carbonate Speciation

Why are these precisions important?

- Stoichiometric dissociation acid dissociation constant (such as K_{1}^{*} and K_{2}^{*}, e.g.) have the same units as $\left[\mathrm{H}^{+}\right]$ \Rightarrow need to know on which pH scale these constants are given
- Dialogue between modellers and experimentalists easier if concepts used in common are known and agreed upon

Carbonate Chemistry

Let $C_{\mathrm{T}}=\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]$. Equilibrium relationships lead to the following speciation relationships

$$
\frac{\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]}{C_{\mathrm{T}}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}}
$$

$$
\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{C_{\mathrm{T}}}=\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}}
$$

$$
\frac{\left[\mathrm{CO}_{3}^{2-}\right]}{C_{\mathrm{T}}}=\frac{K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}}
$$

$\Rightarrow \begin{gathered}\mathrm{pH} \text { plays a central role for the } \\ \text { speciation of the } \mathrm{CO}_{2}-\mathrm{HCO}_{3}^{-}-\mathrm{CO}_{3}^{2-} \text { system }\end{gathered}$

Speciation: Bjerrum Plot

Introduction
Carbonate Chemistry pH Calculation vative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

Speciation: Bjerrum Plot

Points d'équivalence

Speciation: Bjerrum Plot

Seawater - freshwater

Introduction
Carbonate Chemistry

Chemical Equilibria pH Scales
Speciation
Alkalinity

Speciation: Temperature and Pressure Effects

Temperate and cold surface waters, deep water (3000 m)

Carbonate Chemistry

Special Roles of Different Species

- $\mathrm{CO}_{2(\mathrm{aq})}$: air-sea exchange
- CO_{3}^{2-} : carbonate dissolution

Measurables

- $\mathrm{CO}_{2(\mathrm{aq})}$: by IR absorption (under favourable conditions)
- pH : after consideration of all the complications
- CO_{3}^{2-} : UV spectrophotometry of $\mathrm{Pb}(\mathrm{II})$ complexation
- C_{T} : by degassing via acidification
- Alkalinity: by titration with a strong acid (e.g., HCl)

State Variables of the Carbonate System

- H^{+}(or pH), $\mathrm{CO}_{2(\mathrm{aq})}$ (or pCO_{2}) and CO_{3}^{2-} are the only species participating in the carbonate equilibria that can be directly measured
- Neither H^{+}nor pCO_{2} nor CO_{3}^{2-} are conservative: variations are not only controlled by sources and sinks in the system, but also by other state variables of the system (temperature, pressure) or other solutes, ...

$$
\Rightarrow \begin{gathered}
p \mathrm{H}, \mathrm{pCO}_{2} \text { and } \mathrm{CO}_{3}^{2-} \text { are } \\
\text { unsuitable as state variables in models }
\end{gathered}
$$

- C_{T} is conservative and measurable
- 4 unknowns and 2 equilibrium relationships would require a second conservative and measurable parameter ... alkalinity

Alkalinity: a First Tour

- Alkalinity measures the capacity of a solution to neutralize acid to the bicarbonate equivalence point (where $\left[\mathrm{HCO}_{3}^{-}\right]=\left[\mathrm{H}^{+}\right]$), also called second equivalence point
- Measured by titration of a sample with a strong acid (generally HCl) until the equivalence point is reached; the titration curve (evolution of $p \mathrm{H}$ as a function of the added amount of acid) has an inflection point at this point, which must be determined with precision
- The alkalinity of the sample is then defined as the mole equivalent of acid added to reach the equivalence point \Rightarrow at the equivalence point, alkalinity is reduced to zero

Dickson (1981):
"The total alkalinity of a natural water is thus defined as the number of moles of hydrogen ion equivalent to the excess of proton acceptors (bases formed from weak acids with a dissociation constant $K \leq 10^{-4.5}$, at $25^{\circ} \mathrm{C}$ and zero ionic strength) over proton donors (acids with $K>10^{-4.5}$) in one kilogram of sample."

$$
\mathrm{Alk}_{\mathrm{T}}:=\sum_{i}\left[{\text { proton } \left.\text { acceptor }_{i}\right]-\sum_{j}\left[\text { proton donor }_{j}\right]}\right.
$$

Notice that

$$
K \leq 10^{-4.5} \Leftrightarrow p K \geq 4.5 \quad \text { and } \quad K>10^{-4.5} \Leftrightarrow p K<4.5
$$

Alkalinity Contributions: Carbonic Acid Example

- Carbonic Acid $\mathrm{H}_{2} \mathrm{CO}_{3}$

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}, \quad p K_{\mathrm{C} 1}=6.3
$$

$p K_{\mathrm{C} 1} \geq 4.5 \Rightarrow$ base is an acceptor, contributing $+\left[\mathrm{HCO}_{3}^{-}\right]$

- Bicarbonate ion HCO_{3}^{-}

$$
\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}, \quad p K_{\mathrm{C} 2}=10.3
$$

$p K_{\mathrm{C} 2} \geq 4.5 \Rightarrow$ base is an acceptor, contributing $+2 \times\left[\mathrm{CO}_{3}^{2-}\right]$:
by accepting a proton, the base CO_{3}^{2-} is converted to HCO_{3}^{-}, another acceptor, which must also be accounted for.

Alkalinity Contributions: Phosphoric Acid Example

- Orthophosphoric Acid $\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+}, \quad p K_{\mathrm{P} 1}=2.1
$$

$p K_{P 1}<4.5 \Rightarrow$ acid is a donor and contributes $-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$

- Dihydrogen phosphate $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}^{+}, \quad p K_{\mathrm{P} 2}=7.2
$$

$p K_{P 2} \geq 4.5 \Rightarrow$ base is an acceptor and contributes $+\left[\mathrm{HPO}_{4}^{2-}\right]$

- Hydrogen phosphate HPO_{4}^{2-}

$$
\mathrm{HPO}_{4}^{2-} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}^{+}, \quad p K_{\mathrm{P} 3}=12.7
$$

$p K_{\mathrm{P} 3} \geq 4.5 \Rightarrow$ base is an acceptor, contributing $+2 \times\left[\mathrm{PO}_{4}^{3-}\right]$

Alkalinity

Acide	$p K_{\mathrm{A}}$	Type provided	Species	$\mathrm{H}^{+} \mathrm{eq} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}$	14.0	acceptor	OH^{-}	$\left[\mathrm{OH}{ }^{-}\right]$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	6.3	acceptor	HCO_{3}^{-}	$\left[\mathrm{HCO}_{3}^{-}\right]$
HCO_{3}^{-}	10.3	acceptor	CO_{3}^{2-}	$2 \times\left[\mathrm{CO}_{3}^{2-}\right]$
$\mathrm{B}\left(\mathrm{OH}_{3}\right.$	9.2	acceptor	$\mathrm{B}_{3}(\mathrm{OH})_{4}^{-}$	$\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]$
HSO_{4}^{-}	2.0	donor	HSO_{4}^{-}	$-\left[\mathrm{HSO}_{4}^{-}\right]$
HF^{+}	3.2	donor	HF	$-[\mathrm{HF}]$
H^{+}	-	donor	H^{+}	$-\left[\mathrm{H}^{+}\right]$
$\mathrm{H}_{3} \mathrm{PO}_{4}$	2.1	donor	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.2	acceptor	HPO_{4}^{2-}	$\left[\mathrm{HPO}_{4}^{2-}\right]$
HPO_{4}^{2-}	12.7	accepteur	PO_{4}^{3-}	$2 \times\left[\mathrm{PO}_{4}^{3-}\right]$
$\mathrm{H}_{4} \mathrm{SiO}_{4}$	9.7	acceptor	$\mathrm{H}_{3} \mathrm{SiO}_{4}^{-}$	$\left[\mathrm{H}_{3} \mathrm{SiO}_{4}^{-}\right]$
$\mathrm{H}_{2} \mathrm{~S}$	7.0	acceptor	HS^{-}	$\left[\mathrm{HS}^{-}\right]$
HS^{-}	12.0	acceptor	S^{2-}	$2 \times\left[\mathrm{S}^{2-}\right]$
NH_{4}^{+}	9.3	acceptor	NH_{3}	$\left[\mathrm{NH}_{3}\right]$

Compiled from data reported by Dickson (1981)

Introduction
Carbonate Chemistry

Chemical Equilibria
pH Scales
Speciation
Alkalinity

Alkalinity in Detail

We thus obtain the following expression for alkalinity

$$
\begin{aligned}
\text { Alk } k_{T}= & {\left[\mathrm{HCO}_{3}^{-}\right]+2 \times\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{OH}^{-}\right] } \\
& +\left[\mathrm{HPO}_{4}^{2-}\right]+2 \times\left[\mathrm{PO}_{4}^{3-}\right]+\left[\mathrm{H}_{3} \mathrm{SiO}_{4}^{-}\right] \\
& +\left[\mathrm{NH}_{3}\right]+\left[\mathrm{HS}^{-}\right]+2 \times\left[\mathrm{S}^{2-}\right]+\ldots \\
& -\left[\mathrm{H}^{+}\right]_{\mathrm{F}}-\left[\mathrm{HSO}_{4}^{-}\right]-[\mathrm{HF}]-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]-\ldots
\end{aligned}
$$

where the ... stand for the concentrations of additional negligible proton donors and acceptors.

Alkalinity in Practice

Alkalinity can generally be approximated to excellent precision by
$\mathrm{Alk}_{\mathrm{T}} \simeq\left[\mathrm{HCO}_{3}^{-}\right]+2 \times\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right] \equiv \mathrm{Alk} \mathrm{CBW}$
Often, it is even sufficient to adopt

$$
\mathrm{Alk}_{\mathrm{T}} \simeq\left[\mathrm{HCO}_{3}^{-}\right]+2 \times\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right] \equiv \mathrm{Alk}_{\mathrm{CB}}
$$

However, under certain particular conditions, it may be necessary to take additional contributors into account, such as, e. g., the conjugate bases of phosphoric or silicic acids

- Alkalinity is a complex concept, with an opaque definition
- In the literature, there are alternative definitions based upon electroneutrality, that define alkalinity as being equal to the charge difference between conservative cations and anions
- Alkalinity defined this way
- is also conservative (by construction);
- neglects contributions from non charged bases (e.g., NH_{3}) that may be important under some conditions (e. g., anoxic waters)
- is equal to total alkalinity up to a sum of total concentrations (total phosphate, ammonium, sulphate), that are often, but not always, negligible
- makes the concept even more confusing

Total Alkalinity: Properties

- Total alkalinity is conservative
- affected by the precipitation and the dissolution of minerals

$$
\mathrm{CaCO}_{3} \leftrightharpoons \mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-}
$$

- not affected by the dissolution of gaseous CO_{2} in water

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

- mixing two water samples, with masses M_{1} and M_{2}, and total alkalinities A_{1} and A_{2}, resp., produce a mixture of mass $M=M_{1}+M_{2}$ and total alkalinity A, such that $M A=M_{1} A_{1}+M_{2} A_{2}$
- The dominant alkalinity fraction in the most natural waters is carbonate alkalinity

$$
\mathrm{Alk}{ }_{\mathrm{C}}=\left[\mathrm{HCO}_{3}^{-}\right]+2 \times\left[\mathrm{CO}_{3}^{2-}\right]
$$

C_{T} and $A l k_{T}$ in the Ocean

DIC: Dissolved Inorganic Carbon

C_{T} and $\mathrm{Alk}_{\mathrm{T}}$ in the Ocean: Origin of Gradients

Vertical gradients

Inter-basin gradients

Following Broecker and Peng (1982)

Guy Munhoven Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry

Posing the problem
Procedure
General Acid-Base System

Calculating $p \mathrm{H}$ and Speciation From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

Posing the problem

- select an appropriate approximation, such as, e.g.,

$$
\mathrm{Alk}_{\mathrm{T}} \simeq\left[\mathrm{HCO}_{3}^{-}\right]+2 \times\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]
$$

- Alk ${ }_{\mathrm{T}}, B_{\mathrm{T}}$ and C_{T} are given
- temperature, salinity and pressure given
- determine
- solution pH
- $\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right],\left[\mathrm{HCO}_{3}^{-}\right],\left[\mathrm{CO}_{3}^{2-}\right]$ (speciation)
- CO_{2} partial pressure in the atmosphere in equilibrium with the solution $\left(\mathrm{pCO}_{2}\right)$
\Rightarrow express each concentration as a function of $\left[\mathrm{H}^{+}\right] \ldots$

Carbonate System Speciation

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{T}}=\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right] \\
& \mathrm{CO}_{2(\mathrm{aq})}^{*}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad K_{1}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]} \\
& \mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \quad K_{2}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}
\end{aligned}
$$

K_{1}^{*} and K_{2}^{*} (stoichiometric) equilibrium constants

Carbonate System Speciation

$$
\begin{aligned}
K_{1}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]} \Rightarrow\left[\mathrm{HCO}_{3}^{-}\right] & =\frac{K_{1}^{*}}{\left[\mathrm{H}^{+}\right]}\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right] \\
K_{2}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]} \Rightarrow \quad\left[\mathrm{CO}_{3}^{2-}\right] & =\frac{K_{2}^{*}}{\left[\mathrm{H}^{+}\right]}\left[\mathrm{HCO}_{3}^{-}\right] \\
& =\frac{K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}}\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
C_{\mathrm{T}} & =\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]+\frac{K_{1}^{*}}{\left[\mathrm{H}^{+}\right]}\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]+\frac{K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}}\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right] \\
& =\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right] \frac{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}}
\end{aligned}
$$

Carbonate System: Speciation Relationships

Accordingly

$$
\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}
$$

Since

$$
\left[\mathrm{HCO}_{3}^{-}\right]=\frac{K_{1}^{*}}{\left[\mathrm{H}^{+}\right]}\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right] \quad \text { and } \quad\left[\mathrm{CO}_{3}^{2-}\right]=\frac{K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}}\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]
$$

we furthermore get

$$
\begin{aligned}
{\left[\mathrm{HCO}_{3}^{-}\right] } & =\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}} \\
{\left[\mathrm{CO}_{3}^{2-}\right] } & =\frac{K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}
\end{aligned}
$$

Borate System Speciation

Total dissolved borate

$$
B_{\mathrm{T}}=\left[\mathrm{B}(\mathrm{OH})_{3}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]
$$

Acid-base equilibrium

$$
\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{B}(\mathrm{OH})_{4}^{-}
$$

Equilibrium relationship

$$
K_{B}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]}{\left[\mathrm{B}(\mathrm{OH})_{3}\right]}
$$

Borate System: Speciation Relationships

$$
\left.\begin{array}{c}
K_{\mathrm{B}}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]}{\left[\mathrm{B}(\mathrm{OH})_{3}\right]} \Rightarrow\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]=\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]}\left[\mathrm{B}(\mathrm{OH})_{3}\right] \\
B_{\mathrm{T}}
\end{array}=\left[\mathrm{B}(\mathrm{OH})_{3}\right]+\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]}\left[\mathrm{B}(\mathrm{OH})_{3}\right]\right]+\left[\mathrm{B}(\mathrm{OH})_{3}\right] \frac{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]} .
$$

Hence

$$
\left[\mathrm{B}(\mathrm{OH})_{3}\right]=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}} \quad \text { and } \quad\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]=\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}}
$$

Calculating $p \mathrm{H}$ From Alk T_{T} and C_{T}

Processing of the Alk k_{T} terms related to the carbonate system

$$
\begin{aligned}
{\left[\mathrm{HCO}_{3}^{-}\right] } & =\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}} \\
2\left[\mathrm{CO}_{3}^{2-}\right] & =\frac{2 K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}} \\
{\left[\mathrm{~B}(\mathrm{OH})_{4}^{-}\right] } & =\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}
\end{aligned}
$$

Calculating $p \mathrm{H}$ From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

$$
\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]+2 K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}+\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}}+\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]-\mathrm{Alk}_{\mathrm{T}}=0
$$

- Equation of the form $f\left(\left[\mathrm{H}^{+}\right]\right)=0$, where $\left[\mathrm{H}^{+}\right]>0$

- First term

- strictly decreasing with $\left[\mathrm{H}^{+}\right]$for $C_{T}>0$
- $\lim _{\left[\mathrm{H}^{+}\right] \rightarrow 0}=2 C_{T}$
- $\lim _{\left[\mathrm{H}^{+}\right] \rightarrow+\infty}=0$

Calculating $p \mathrm{H}$ From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

$$
\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]+2 K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}+\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}}+\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]-\mathrm{Alk}_{\mathrm{T}}=0
$$

- Second term
- strictly decreasing with $\left[\mathrm{H}^{+}\right]$for $B_{\mathrm{T}}>0$
- $\lim _{\left[H^{+}\right] \rightarrow 0}=B_{T}$
- $\lim _{\left[\mathrm{H}^{+}\right] \rightarrow+\infty}=0$
- Third and fourth terms
- strictly decreasing with $\left[\mathrm{H}^{+}\right]$
- $\lim _{\left[\mathrm{H}^{+}\right] \rightarrow 0}=+\infty$
- $\lim _{\left[\mathrm{H}^{+}\right] \rightarrow+\infty}=-\infty$

Calculating $p \mathrm{H}$ From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

$$
\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]+2 K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}+\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}}+\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]-\mathrm{Alk}_{\mathrm{T}}=0
$$

Equation of the form $f\left(\left[\mathrm{H}^{+}\right]\right)=0$, where $\left[\mathrm{H}^{+}\right]>0$ and

- f strictly decreasing with $\left[\mathrm{H}^{+}\right]$
- f unbounded: sup $=+\infty, \inf =-\infty$
\Rightarrow one and only one positive root for any $\mathrm{Alk}_{\mathrm{T}}$.

Calculating $p \mathrm{H}$ From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

$$
\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]+2 K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}+\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}}+\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]-\mathrm{Alk}_{\mathrm{T}}=0
$$

Root H has an intrinsic lower bound:

- consider the infimum of non-water alkalinity: $A_{\mathrm{nWinf}}=0$
- let $H_{\text {inf }}$ be the positive root of $A_{\mathrm{nWinf}}+\frac{K_{\mathrm{W}}^{*}}{H_{\text {inf }}}-H_{\text {inf }}-\mathrm{Alk}_{\mathrm{T}}=0$
- $f\left(H_{\text {inf }}\right)>A_{\mathrm{nWinf}}+\frac{K_{\mathrm{W}}^{*}}{H_{\text {inf }}}-H_{\text {inf }}-\mathrm{Alk}_{\mathrm{T}}=0$
- accordingly: $H_{\text {inf }}<H \ldots$

Calculating $p \mathrm{H}$ From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

$$
\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]+2 K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}+\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}}+\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]-\mathrm{Alk}_{\mathrm{T}}=0
$$

\ldots and the root H has an intrinsic upper bound:

- consider the supremum of non-water alkalinity:
$A_{\mathrm{nW} \text { sup }}=2 C_{\mathrm{T}}+B_{\mathrm{T}}$
- let $H_{\text {sup }}$ be the positive solution of

$$
A_{\mathrm{nW}} \text { sup }+\frac{K_{W}^{*}}{H}-H-\mathrm{Alk}_{\mathrm{T}}=0
$$

- $f\left(H_{\text {sup }}\right)<A_{\text {nWsup }}+\frac{K_{W}^{*}}{H_{\text {sup }}}-H_{\text {sup }}-$ Alk $_{\mathrm{T}}=0$

$$
\Rightarrow H_{\text {inf }}<H<H_{\text {sup }}
$$

Calculating $p \mathrm{H}$ From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

$$
\frac{K_{1}^{*}\left[\mathrm{H}^{+}\right]+2 K_{1}^{*} K_{2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}^{*}\left[\mathrm{H}^{+}\right]+K_{1}^{*} K_{2}^{*}} C_{\mathrm{T}}+\frac{K_{\mathrm{B}}^{*}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{B}}^{*}} B_{\mathrm{T}}+\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]-\mathrm{Alk}_{\mathrm{T}}=0
$$

- Equation of the form $f\left(\left[\mathrm{H}^{+}\right]\right)=0$, where $\left[\mathrm{H}^{+}\right]>0$ and
- f strictly decreasing with $\left[\mathrm{H}^{+}\right]$
- f unbounded: sup $=+\infty$, inf $=-\infty$
\Rightarrow one and only one positive root for any $\mathrm{Alk}_{\mathrm{T}}$.
- Root can be intrinsically bracketed
- Equation can be reliably solved for $\left[\mathrm{H}^{+}\right]$by a hybrid Newton-Raphson-bisection method (convergence guaranteed)

Calculating pH From $\mathrm{Alk}_{\mathrm{T}}, \mathrm{C}_{\mathrm{T}}$, and Further Systems

- Add contributions, e. g., from the phosphate system
- Alkp $=\left[\mathrm{HPO}_{4}^{2-}\right]+2 \times\left[\mathrm{PO}_{4}^{3-}\right]-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$
- Needs speciation relationships for complex acid-base systems

General Acid-Base System

- Dissociation reactions of a general n-protic acid $H_{n} A$

$$
\begin{aligned}
\mathrm{H}_{n} \mathrm{~A} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{n-1} \mathrm{~A}^{-} & K_{\mathrm{A} 1}^{*} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{n-1} \mathrm{~A}^{-}\right]}{\left[\mathrm{H}_{n} \mathrm{~A}\right]} \\
\mathrm{H}_{n-1} \mathrm{~A}^{-} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{n-2} \mathrm{~A}^{2-} & K_{\mathrm{A} 2}^{*} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{n-2} \mathrm{~A}^{2-}\right]}{\left[\mathrm{H}_{n-1} \mathrm{~A}^{-}\right]} \\
& \vdots & & \vdots \\
\mathrm{HA}^{(n-1)-} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{n-} & K_{\mathrm{A} n}^{*} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{n-}\right]}{\left[\mathrm{HA}^{(n-1)-}\right]}
\end{aligned}
$$

- $K_{\mathrm{A} 1}^{*}, K_{\mathrm{A} 2}^{*}, \ldots K_{\mathrm{A} n}^{*}$ (stoichiometric) equilibrium constants

General Acid-Base System

$$
\begin{array}{rlc}
K_{\mathrm{A} 1}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{n-1} \mathrm{~A}^{-}\right]}{\left[\mathrm{H}_{n} \mathrm{~A}\right]} \Rightarrow & \left.\Rightarrow \mathrm{H}_{n-1} \mathrm{~A}^{-}\right]=\frac{K_{\mathrm{A} 1}^{*}}{\left[\mathrm{H}^{+}\right]}\left[\mathrm{H}_{n} \mathrm{~A}\right] \\
K_{\mathrm{A} 2}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{n-2} \mathrm{~A}^{2-}\right]}{\left[\mathrm{H}_{n-1} \mathrm{~A}^{-}\right]} & \Rightarrow & {\left[\mathrm{H}_{n-2} \mathrm{~A}^{2-}\right]=\frac{K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}}\left[\mathrm{H}_{n} \mathrm{~A}\right]} \\
K_{\mathrm{A} 3}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{n-3} \mathrm{~A}^{3-}\right]}{\left[\mathrm{H}_{n-2} \mathrm{~A}^{2-}\right]} & \Rightarrow & {\left[\mathrm{H}_{n-3} \mathrm{~A}^{3-}\right]=\frac{K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} K_{\mathrm{A} 3}^{*}}{\left[\mathrm{H}^{+}\right]^{3}}\left[\mathrm{H}_{n} \mathrm{~A}\right]} \\
\vdots & \vdots \\
K_{\mathrm{A} n}^{*}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{n-}\right]}{\left[\mathrm{HA} \mathrm{~A}^{(n-1)-}\right]} & \Rightarrow & {\left[\mathrm{A}^{n-}\right]=\frac{K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \ldots K_{\mathrm{A} n}^{*}}{\left[\mathrm{H}^{+}\right]^{n}}\left[\mathrm{H}_{n} \mathrm{~A}\right]}
\end{array}
$$

General Acid-Base System: Speciation Relationships

Let $A_{\top}=\left[\mathrm{H}_{n} \mathrm{~A}\right]+\ldots+\left[\mathrm{A}^{n-}\right]$ denote the concentration of total dissolved $H_{n} A$. By summing all the previous equations, we get

$$
A_{\mathrm{T}}=\left(1+\frac{K_{\mathrm{A} 1}^{*}}{\left[\mathrm{H}^{+}\right]}+\frac{K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}}{\left[\mathrm{H}^{+}\right]^{2}}+\ldots+\frac{K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}}{\left[\mathrm{H}^{+}\right]^{n}}\right)\left[\mathrm{H}_{n} \mathrm{~A}\right]
$$

Hence

$$
A_{\mathrm{T}}=\frac{\left[\mathrm{H}^{+}\right]^{n}+K_{\mathrm{A} 1}^{*}\left[\mathrm{H}^{+}\right]^{n-1}+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}\left[\mathrm{H}^{+}\right]^{n-2}+\ldots+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}}{\left[\mathrm{H}^{+}\right]^{n}}\left[\mathrm{H}_{n} \mathrm{~A}\right]
$$

and thus finally

$$
\left[\mathrm{H}_{n} \mathrm{~A}\right]=\frac{\left[\mathrm{H}^{+}\right]^{n}}{\left[\mathrm{H}^{+}\right]^{n}+K_{\mathrm{A} 1}^{*}\left[\mathrm{H}^{+}\right]^{n-1}+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}\left[\mathrm{H}^{+}\right]^{n-2}+\ldots+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}} A_{\mathrm{T}}
$$

General Acid-Base System

The fractions of undissociated acid and of the dissociated forms $\mathrm{H}_{n-1} \mathrm{~A}^{-}, \mathrm{H}_{n-2} \mathrm{~A}^{2-}, \ldots, \mathrm{A}^{n-}$ then alternately write

$$
\begin{aligned}
\frac{\left[\mathrm{H}_{n} \mathrm{~A}\right]}{A_{\mathrm{T}}} & =\frac{\left[\mathrm{H}^{+}\right]^{n}}{\left[\mathrm{H}^{+}\right]^{n}+K_{\mathrm{A} 1}^{*}\left[\mathrm{H}^{+}\right]^{n-1}+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}\left[\mathrm{H}^{+}\right]^{n-2}+\ldots+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}} \\
& \vdots \\
\frac{\left[\mathrm{H}_{n-j} \mathrm{~A}^{j-}\right]}{A_{\mathrm{T}}} & =\frac{K_{\mathrm{A} 1}^{*} \cdots K_{\mathrm{A} j}^{*}\left[\mathrm{H}^{+}\right]^{n-j}}{\left[\mathrm{H}^{+}\right]^{n}+K_{\mathrm{A} 1}^{*}\left[\mathrm{H}^{+}\right]^{n-1}+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}\left[\mathrm{H}^{+}\right]^{n-2}+\ldots+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}} \\
& \vdots \\
\frac{\left[\mathrm{~A}^{n-}\right]}{A_{\mathrm{T}}} & =\frac{K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}}{\left[\mathrm{H}^{+}\right]^{n}+K_{\mathrm{A} 1}^{*}\left[\mathrm{H}^{+}\right]^{n-1}+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}\left[\mathrm{H}^{+}\right]^{n-2}+\ldots+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}}
\end{aligned}
$$

Phosphate System Speciation ...

Application to the phosphate system: $n=3$

$$
\begin{aligned}
P_{\mathrm{T}} & =\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+\left[\mathrm{HPO}_{4}^{2-}\right]+\left[\mathrm{PO}_{4}^{3-}\right] \\
{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right] } & =\frac{\left[\mathrm{H}^{+}\right]^{3}}{\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{P} 1}^{*}\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}} P_{\mathrm{T}} \\
{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] } & =\frac{K_{\mathrm{P} 1}^{*}\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{P} 1}^{*}\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}} P_{\mathrm{T}} \\
{\left[\mathrm{HPO}_{4}^{2-}\right] } & =\frac{K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{P} 1}^{*}\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}} P_{\mathrm{T}} \\
{\left[\mathrm{PO}_{4}^{3-}\right] } & =\frac{K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}}{\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{P} 1}^{*}\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}} P_{\mathrm{T}}
\end{aligned}
$$

... and Phosphate Alkalinity

Alkp $=-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+\left[\mathrm{HPO}_{4}^{2-}\right]+2\left[\mathrm{PO}_{4}^{3-}\right]$

$$
\begin{aligned}
& =\frac{-\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]+2 K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}}{\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{P} 1}^{*}\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}} P_{\mathrm{T}} \\
& =\left(\frac{K_{P 1}^{*}\left[\mathrm{H}^{+}\right]^{2}+2 K_{\mathrm{P} 1}^{*} K_{P 2}^{*}\left[\mathrm{H}^{+}\right]+3 K_{P 1}^{*} K_{\mathrm{P} 2}^{*} K_{P 3}^{*}}{\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{P} 1}^{*}\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*}\left[\mathrm{H}^{+}\right]+K_{\mathrm{P} 1}^{*} K_{\mathrm{P} 2}^{*} K_{\mathrm{P} 3}^{*}}-1\right) P_{\mathrm{T}}
\end{aligned}
$$

" -1 " $\rightarrow 1$ is the order of the acid dissociation step that defined the last (i. e., the weakest) proton donor

Alkalinity Contribution of a General Acid-Base System

For a general acid-base system $\mathrm{H}_{n} \mathrm{~A}-\mathrm{H}_{n-1} \mathrm{~A}^{-}-\ldots$ - A^{n-} with dissociation constant $p K$ values $p K_{1}, \ldots, p K_{n}$, we have:

$$
\begin{aligned}
\text { Alk }_{\mathrm{A}}= & -m\left[\mathrm{H}_{n} \mathrm{~A}\right] \cdots-(m-1)\left[\mathrm{H}_{n-1} \mathrm{~A}^{-}\right] \cdots-\left[\mathrm{H}_{n-m-1} \mathrm{~A}^{(m-1)-}\right] \\
& +\left[\mathrm{H}_{n-m+1} \mathrm{~A}^{(m+1)-}\right]+\cdots+(n-m)\left[\mathrm{A}^{n-}\right]
\end{aligned}
$$

where m is an integer such that

- $p K_{m}<4.5 \leq p K_{m+1}$ if $p K_{1}<4.5$ and $p K_{n} \geq 4.5$
- $m=0$ if $p K_{1} \geq 4.5$
- $m=n$ if $p K_{n}<4.5$

Alkalinity Contribution of a General Acid-Base System

- Then

$$
\operatorname{Alk}_{\mathrm{A}}=\sum_{j=0}^{n}(j-m)\left[\mathrm{H}_{n-j} \mathrm{~A}^{j-}\right]
$$

- It was previously established that

$$
\frac{\left[\mathrm{H}_{n-j} \mathrm{~A}^{j-}\right]}{A_{\mathrm{T}}}=\frac{K_{\mathrm{A} 1}^{*} \cdots K_{\mathrm{A} j}^{*}\left[\mathrm{H}^{+}\right]^{n-j}}{\left[\mathrm{H}^{+}\right]^{n}+K_{\mathrm{A} 1}^{*}\left[\mathrm{H}^{+}\right]^{n-1}+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*}\left[\mathrm{H}^{+}\right]^{n-2}+\ldots+K_{\mathrm{A} 1}^{*} K_{\mathrm{A} 2}^{*} \cdots K_{\mathrm{A} n}^{*}}
$$

- With $\Pi_{j}=\prod_{i=0}^{j} K_{A i}^{*}$ and $\Pi_{0}=1$ this can be rewritten

$$
\left[\mathrm{H}_{n-j} \mathrm{~A}^{j-}\right]=\frac{\Pi_{j}\left[\mathrm{H}^{+}\right]^{n-j}}{\sum_{i=0}^{n} \Pi_{i}\left[\mathrm{H}^{+}\right]^{n-i}} A_{\mathrm{T}}
$$

Alkalinity Contribution of a General Acid-Base System

Hence

$$
\begin{aligned}
\operatorname{Alk}_{\mathrm{A}} & =\sum_{j=0}^{n}(j-m) \frac{\Pi_{j}\left[\mathrm{H}^{+}\right]^{n-j}}{\sum_{i=0}^{n} \Pi_{i}\left[\mathrm{H}^{+}\right]^{n-i}} A_{\mathrm{T}} \\
& =\left(\frac{\sum_{j=0}^{n} j \Pi_{j}\left[\mathrm{H}^{+}\right]^{n-j}}{\sum_{j=0}^{n} \Pi_{j}\left[\mathrm{H}^{+}\right]^{n-j}}-m\right) A_{\top}
\end{aligned}
$$

For $A_{\mathrm{T}}>0$ this expression

- is strictly decreasing for $\left[\mathrm{H}^{+}\right]>0$;
- has the supremum $\lim _{\left[\mathrm{H}^{+}\right] \rightarrow 0}=(n-m) A_{\mathrm{T}}$;
- has the infimum $\lim _{\left[\mathrm{H}^{+}\right] \rightarrow+\infty}=-m A_{\mathrm{T}}$.
(Munhoven, GMD 2013)

pH From Alk ${ }_{T}$ and Arbitrary Acid-Base Systems

General Alkalinity-pH equation
$\operatorname{Alk}_{\mathrm{C}}\left(\left[\mathrm{H}^{+}\right] ; C_{\mathrm{T}}\right)+\cdots+\operatorname{Alk}_{\mathrm{A}}\left(\left[\mathrm{H}^{+}\right] ; A_{\mathrm{T}}\right)+\cdots+\frac{K_{\mathrm{W}}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]-\mathrm{Alk}_{\mathrm{T}}=0$

- Equation of the form $f\left(\left[\mathrm{H}^{+}\right]\right)=0$, where $\left[\mathrm{H}^{+}\right]>0$ and
- f strictly decreasing with $\left[\mathrm{H}^{+}\right]$
- f unbounded: sup $=+\infty$, inf $=-\infty$
\Rightarrow one and only one positive root for any $\mathrm{Alk}_{\mathrm{T}}$.
- Root has intrinsic brackets that can be calculated from the non-water-alkalinity infimum and supremum
- Equation can be reliably solved for $\left[\mathrm{H}^{+}\right]$by a hybrid Newton-Raphson-bisection method (convergence guaranteed)

Introduction

General Acid-Base System

Some Details Skipped

- All dissociation constants must be given on the same pH scale $\Rightarrow\left[\mathrm{H}^{+}\right]$root on that scale
- $\frac{K_{W}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]$should actually read $\frac{K_{w}^{*}}{\left[\mathrm{H}^{+}\right]}-\left[\mathrm{H}^{+}\right]_{\mathrm{f}}$
- $\left[\mathrm{H}^{+}\right]_{f}=\left[\mathrm{H}^{+}\right] / s$, where $s=O(1)(s \geq 1)$ is a scale conversion factor from the free to the working scale (total or seawater)
- Other background acids $\left(\mathrm{HSO}_{4}^{-}, \mathrm{HF}\right)$ to be added as part of their respective acid-base systems
- Initial iterations in pH -Alk space, switching to $\left[\mathrm{H}^{+}\right]$-Alk space when sufficiently close to the root

Calculating $p \mathrm{H}$ From $\mathrm{Alk}_{\mathrm{T}}$ and C_{T}

- Concentrations $\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right],\left[\mathrm{HCO}_{3}^{-}\right],\left[\mathrm{CO}_{3}^{2-}\right]$ can now be calculated from the speciation relationships and $\left[\mathrm{H}^{+}\right]$
- pCO_{2} is calculated from Henry's Law

$$
\mathrm{p}_{\mathrm{CO}_{2}} \simeq f_{\mathrm{CO}_{2}}=\frac{\left[\mathrm{CO}_{2(\mathrm{aq})}^{*}\right]}{K_{\mathrm{H}}^{*}}
$$

pH as a Function of C_{T} and Alk $_{\mathrm{T}}$

$$
t=20^{\circ} \mathrm{C}, P=0 \text { bar, } S=35
$$

$$
t=1^{\circ} \mathrm{C}, P=0 \text { bar, } S=35
$$

pCO_{2} and $\left[\mathrm{CO}_{3}^{2-}\right]$ as a Function of C_{T} and $\mathrm{Alk} \mathrm{T}_{\mathrm{T}}$

$$
\begin{gathered}
t=20^{\circ} \mathrm{C}, P=0 \text { bar, } S=35 \\
\mathrm{pCO}_{2}(\mu \mathrm{~atm})
\end{gathered}
$$

$t=1^{\circ} \mathrm{C}, P=300$ bar, $S=35$
$\left[\mathrm{CO}_{3}^{2-}\right](\mu \mathrm{mol} / \mathrm{kg}-\mathrm{SW})$

$\left[\mathrm{CO}_{2}^{*}\right]$ and $\left[\mathrm{CO}_{3}^{2-}\right]$ as a Function of C_{T} and $\mathrm{Alk} \mathrm{K}_{\mathrm{T}}$

$$
t=20^{\circ} \mathrm{C}, P=0 \text { bar, } S=35
$$

$\left[\mathrm{CO}_{2}^{*}\right](\mu \mathrm{mol} / \mathrm{kg}-\mathrm{SW})$

$t=1^{\circ} \mathrm{C}, P=300$ bar, $S=35$
$\left[\mathrm{CO}_{3}^{2-}\right](\mu \mathrm{mol} / \mathrm{kg}-\mathrm{SW})$

Atmospheric CO_{2} and Deep-Sea CO_{3}^{2-}

Deep Ocean (3000 m)

Calculating pH and Chemical Speciation in General

- Determine the total concentrations of all the acid-base systems present
- Chose an adequate approximation for Total Alkalinity
- Use the speciation relationships to convert the expression for Alk k_{T} to an equation in $\left[\mathrm{H}^{+}\right]$
- Solve that equation (robust and efficient methods available)
- Calculate the speciation of all the systems present from the speciation relationships

Alkalinity, a Conservative Variable?

A Detour via Electroneutrality...

Electroneutrality equation for the major (plus a few minor) ions in average seawater:

$$
\begin{aligned}
& {\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Mg}^{2+}\right]+2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{K}^{+}\right]+2\left[\mathrm{Sr}^{2+}\right]} \\
& \quad-\left[\mathrm{Cl}^{-}\right]-\left[\mathrm{Br}^{-}\right]-2\left[\mathrm{SO}_{4}^{2-}\right]-\left[\mathrm{F}^{-}\right] \\
& \quad-\left[\mathrm{HCO}_{3}^{-}\right]-2\left[\mathrm{CO}_{3}^{2-}\right]-\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]=0
\end{aligned}
$$

From Electroneutrality. . .

Electroneutrality equation for the major ions in average seawater, completed by the missing ion concentrations from alkalinity and nutrients:

$$
\begin{aligned}
& {\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Mg}^{2+}\right]+2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{K}^{+}\right]+2\left[\mathrm{Sr}^{2+}\right]} \\
& \quad-\left[\mathrm{Cl}^{-}\right]-\left[\mathrm{Br}^{-}\right]-2\left[\mathrm{SO}_{4}^{2-}\right]-\left[\mathrm{F}^{-}\right] \\
& \quad-\left[\mathrm{HCO}_{3}^{-}\right]-2\left[\mathrm{CO}_{3}^{2-}\right]-\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right] \\
& \quad-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}_{3} \mathrm{SiO}_{4}^{-}\right] \\
& \quad-\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]-2\left[\mathrm{HPO}_{4}^{2-}\right]-3\left[\mathrm{PO}_{4}^{3-}\right] \\
& \quad-\left[\mathrm{NO}_{3}^{-}\right]+\left[\mathrm{NH}_{4}^{+}\right]-\left[\mathrm{HS}^{-}\right]-2\left[\mathrm{~S}^{2-}\right] \\
& \quad+\left[\mathrm{H}^{+}\right]_{\mathrm{F}}-\left[\mathrm{HSO}_{4}^{-}\right]=0
\end{aligned}
$$

... to Alkalinity

Collect the alkalinity components at the right-hand side and complete by the missing chargeless contributions :

$$
\left.\begin{array}{rl}
{[} & \left.\mathrm{Na}^{+}\right]+2\left[\mathrm{Mg}^{2+}\right]+2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{K}^{+}\right]+2\left[\mathrm{Sr}^{2+}\right] \\
& -\left[\mathrm{Cl}^{-}\right]-\left[\mathrm{Br}^{-}\right]-2\left[\mathrm{SO}_{4}^{2-}\right]-\left[\mathrm{F}^{-}\right]-[\mathrm{HF}] \\
& -\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]-\left[\mathrm{HPO}_{4}^{2-}\right]-\left[\mathrm{PO}_{4}^{3-}\right]-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right] \\
& -2\left[\mathrm{HSO}_{4}^{-}\right]-\left[\mathrm{NO}_{3}^{-}\right]+\left[\mathrm{NH}_{4}^{+}\right]+\left[\mathrm{NH}_{3}\right]-\left[\mathrm{HNO}_{3}\right] \\
= & {\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{OH}^{-}\right]} \\
& +\left[\mathrm{HPO}_{4}^{2-}\right]+2\left[\mathrm{PO}_{4}^{3-}\right]+\left[\mathrm{H}_{3} \mathrm{SiO}_{4}^{-}\right] \\
& +\left[\mathrm{HS}^{-}\right]+2\left[\mathrm{~S}^{2-}\right]+\left[\mathrm{NH}_{3}\right] \\
& -\left[\mathrm{H}^{+}\right]_{\mathrm{F}}-\left[\mathrm{HSO}_{4}^{-}\right]-[\mathrm{HF}]-\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]-\left[\mathrm{HNO}_{3}\right]
\end{array}\right\}=A_{T}
$$

The Explicit Conservative Expression of Alkalinity

The explicit conservative expression of alkalinity, Alk ${ }_{\mathrm{EC}}$, then follows from the left-hand side of the previous equation:

$$
\begin{aligned}
\mathrm{Alk}_{\mathrm{EC}}= & {\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Mg}^{2+}\right]+2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{K}^{+}\right]+2\left[\mathrm{Sr}^{2+}\right] } \\
& -\left[\mathrm{Cl}^{-}\right]-\left[\mathrm{Br}^{-}\right] \\
& -2 \mathrm{TSO}_{4}-\mathrm{THF}-\mathrm{TPO}_{4}-\mathrm{TNO}_{3}+\mathrm{TNH}_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{TSO}_{4} & =\left[\mathrm{HSO}_{4}^{-}\right]+\left[\mathrm{SO}_{4}^{2-}\right] \quad\left(=S_{\mathrm{T}}\right) \\
\mathrm{THF} & =[\mathrm{HF}]+\left[\mathrm{F}^{-}\right] \quad\left(=F_{\mathrm{T}}\right) \\
\mathrm{TPO}_{4} & =\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+\left[\mathrm{HPO}_{4}^{2-}\right]+\left[\mathrm{PO}_{4}^{3-}\right] \quad\left(=P_{\mathrm{T}}\right) \\
\mathrm{TNO}_{3} & =\left[\mathrm{HNO}_{3}\right]+\left[\mathrm{NO}_{3}^{-}\right] \\
\mathrm{TNH}_{3} & =\left[\mathrm{NH}_{4}^{+}\right]+\left[\mathrm{NH}_{3}\right] \quad \text { (Wolf-Gladrow et al., 2007) }
\end{aligned}
$$

Explicit Conservative Expression of Alkalinity: Corollaries

- Alk ${ }_{E C}$ shows that Alk does not simply reduce to the charge difference between conservative cations and anions
- "conservative ion" sometimes ambiguous (e.g., $\mathrm{Sr}^{2+}, \mathrm{Ca}^{2+}$)
- surface-to-deep-sea alkalinity gradients would have to be proportional to salinity
- important role of nutrients
- Alk ${ }_{E C}$ allows to quantify the effect of biogeochemical processes on alkalinity more easily
- Alk ${ }_{E C}$ clearly shows the conservative nature of Alk $_{T}$
- each single term unaffected by pH , pressure and temperature changes

References Cited and Recommended

- Broecker W. S. and Peng T.-H. (1982) Tracers in the Sea, Eldigio Press, Palisades, NY. 690 pp.
- Dickson A. G. et al. (2007) Guide to Best Practices for Ocean CO_{2} Measurements, PICES Special Publication 3, 191 pp.
- Dickson A. G. (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res., 28A(6):609-623.
- Dickson A. G. (1984) pH scales and proton-transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta 48:2299-2308.
- Gruber N. and J. Sarmiento (2006) Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, NJ. 503 pp.
- Munhoven G. (2013) Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1. Geoscientif. Model Dev. 6, 1367-1388.
- Wolf-Gladrow D. A. et al. (2007) Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 106, 287-300.
- Zeebe R. and D. Wolf-Gladrow (2003) CO_{2} in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam. 346 pp.

