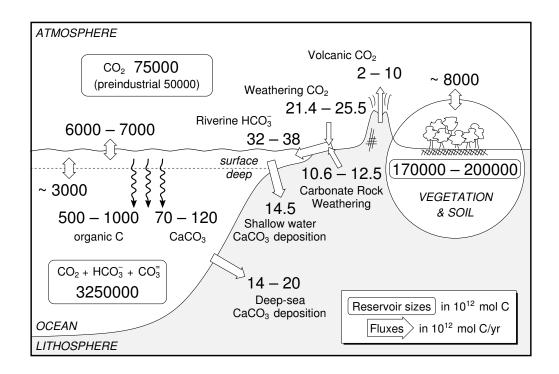
Chemical Equilibria and pH Calculations

Guy Munhoven

Institut d'Astrophysique et de Géophysique (B5c Build.) Room 0/13 eMail: Guy.Munhoven@ulg.ac.be Phone: 04-3669771

14th February 2024

Guy Munhoven


Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Plan

- Chemistry of the carbon dioxide system
- Chemical equilibria
- pH scales
- Conservative state variables: dissolved inorganic carbon and alkalinity
- Carbonate: calculation

Processes and Exchange Fluxes

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales

Speciation Alkalinity

Carbonate Chemistry

Dissolution of atmospheric CO₂ in water

$$\begin{array}{cccc} \mathsf{CO}_{2(\mathsf{g})} & \rightleftharpoons & \mathsf{CO}_{2(\mathsf{aq})} \\ \mathsf{CO}_{2(\mathsf{aq})} + \mathsf{H}_2\mathsf{O} & \rightleftharpoons & \mathsf{H}_2\mathsf{CO}_3 \\ & \mathsf{H}_2\mathsf{CO}_3 & \rightleftharpoons & \mathsf{HCO}_3^- + \mathsf{H}^+ \\ & \mathsf{HCO}_3^- & \rightleftharpoons & \mathsf{CO}_3^{2-} + \mathsf{H}^+ \end{array}$$

Actually

$$\frac{[\mathsf{H}_2\mathsf{CO}_3]}{[\mathsf{H}_2\mathsf{CO}_3]+[\mathsf{CO}_{2(\mathsf{aq})}]} \ll$$

For practical usage, we define

$$\mathsf{CO}^*_{2(\mathsf{aq})} = \mathsf{H}_2 \mathsf{CO}_3 + \mathsf{CO}_{2(\mathsf{aq})}.$$

Carbonate Chemistry

Equilibrium system actually used:

$$\begin{array}{cccc} \mathsf{CO}_{2(\mathsf{g})} & \rightleftharpoons & \mathsf{CO}_{2(\mathsf{aq})}^* \\ \mathsf{CO}_{2(\mathsf{aq})}^* + \mathsf{H}_2\mathsf{O} & \rightleftharpoons & \mathsf{HCO}_3^- + \mathsf{H}^+ \\ & \mathsf{HCO}_3^- & \rightleftharpoons & \mathsf{CO}_3^{2-} + \mathsf{H}^+ \end{array}$$

Equilibrium relationships

$$\begin{array}{lcl} {\cal K}_{\rm H}^* & = & \frac{[{\rm CO}_{2(aq)}^*]}{f_{{\rm CO}_2}} & ({\rm Henry's\ Law}) \\ \\ {\cal K}_1^* & = & \frac{[{\rm H}^+][{\rm HCO}_3^-]}{[{\rm CO}_{2(aq)}^*]} \\ \\ {\cal K}_2^* & = & \frac{[{\rm H}^+][{\rm CO}_3^{2-}]}{[{\rm HCO}_3^-]} \end{array}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation

pK Values of the Equilibrium Constants

- $pK := -\log_{10}(K)$, by analogy with $pH := -\log_{10}([H^+])$
- Consider, e.g., the equilibrium between $CO_{2(aq)}$ and HCO_3^- in a solution containing dissolved CO_2 :

$$\mathcal{K}_{1}^{*} = \frac{[\mathsf{H}^{+}][\mathsf{HCO}_{3}^{-}]}{[\mathsf{CO}_{2(\mathsf{aq})}^{*}]}$$

When $[CO_{2(aq)}^*] = [HCO_3^-]$ (\rightarrow equivalence point), we have

$$K_1^* = [H^+] \Leftrightarrow pK_1^* = pH$$

 \Rightarrow equivalence points located at the pK values

Stoichiometric vs. Thermodynamic Constants

- $K_{\rm H}^*$, K_1^* and K_2^* are stoichiometric constants as they link concentrations
- The corresponding thermodynamic equilibrium constants $K_{\rm H},~K_1$ and K_2
 - link activities instead of concentrations
 - only depend on temperature and pressure
 - have been determined for a large number of reactions
- The activity $\{A\}$ and the concentration [A] of a chemical species A are related by the activity coefficient γ_A

$$\{A\} = \gamma_A[A]$$

ullet γ_A depends on the chemical composition of the solution

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales Speciation Alkalinity

Chemical Composition of Seawater

Composition of one kilogram of average seawater (S = 35)

Solute	mol
Na ⁺	0.46900
${\sf Mg}^{2+}$	0.05282
Ca ²⁺	0.01028
K^+	0.01021
Sr ²⁺	0.00009
CI^-	0.54588
SO^{2-}_4	0.02823
HCO_3^-	0.00186
Br^-	0.00084
CO_3^{2-}	0.00019
$B(OH)_4^-$	0.00008
F ⁻	0.00007
$B(OH)_3$	0.00033

After Millero (1982)

Activity Coefficients

• Influence of activity coefficients not negligible in seawater

lon	γ	
Na^+	0.666	Conditions:
CI^-	0.668	seawater at 25°C and $S=35$
H^+	0.590	After Zeebe and Wolf-Gladrow
HCO_3^-	0.570	(2003, Tab. 1.1.3)
CO_3^{2-3}	0.039	

- Two ways to address this complication
 - calculation of γ values from solute interaction models \Rightarrow difficult and tedious
 - empirical determination of stoichiometric coefficients including effets of γ , as a function of temperature, pressure and salinity \Rightarrow adopted in practice

Guy Munhoven	Chemical Equilibria and pH Calculations
Introduction Carbonate Chemistry pH Calculation Alkalinity: A Conservative Variable?	Chemical Equilibria pH Scales Speciation Alkalinity
pH Scales	

- Classically $pH = -\log_{10}[H^+]$
- However, even in freshwater solutions, free H⁺ ions present only in negligible amounts: most are complexed by water molecules
- In seawater, this complexing extends to other solutes as well
- In seawater, it would be best to adopt $pH = -\log_{10}\{H^+\}$ \Rightarrow useless as $\{H^+\}$ cannot be individually measured
- Definition of operational pH scales that take into account the presence of extra ions able to release H^+ ions
- Motivations essentially experimentally oriented

pH Scales: Free, Total, ...

- Free Scale based upon $[H^+]_F$, the concentration of free and hydrated H^+ ions
- Total Scale takes into account the role of HSO₄:

$$pH_T := -\log_{10}[H^+]_T$$

 $[H^+]_T := [H^+]_F(1 + S_T/K_S)$

where

- $S_{\rm T} = [{\rm SO_4^{2-}}] + [{\rm HSO_4^-}]$ is the total sulphate concentration
- $K_S = \frac{[H^+]_F[SO_4^{2-}]}{[HSO_4^-]}$ is the dissociation constant of HSO_4^-
- $[H^+]_T \simeq [H^+]_F + [HSO_4^-]$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

pH Scales: ... Seawater

 Seawater Scale – takes into account the roles of HSO₄⁻ and HF:

$$pH_{SWS} := -\log_{10}[H^+]_{SWS}$$

 $[H^+]_{SWS} := [H^+]_F(1 + S_T/K_S + F_T/K_F)$

where

- \bullet S_{T} and K_{S} as for the Total Scale
- $F_T = [HF] + [F^-]$ is the total concentration of fluorine
- $K_F = \frac{[H^+]_F[F^-]}{[HF]}$ is the dissociation constant of HF
- $[H^+]_{SWS} \simeq [H^+]_F + [HSO_4^-] + [HF]$

Carbonate Speciation

Why are these precisions important?

- Stoichiometric dissociation acid dissociation constant (such as K_1^* and K_2^* , e.g.) have the same units as $[H^+]$ \Rightarrow need to know on which pH scale these constants are given
- Dialogue between modellers and experimentalists easier if concepts used in common are known and agreed upon

Guy Munhoven

Chemical Equilibria and pH Calculations

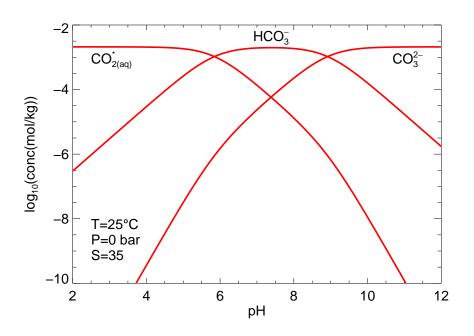
Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

Carbonate Chemistry

Let $C_T = [CO_{2(aq)}^*] + [HCO_3^-] + [CO_3^{2-}]$. Equilibrium relationships lead to the following *speciation relationships*

$$\frac{[\mathsf{CO}^*_{2(\mathsf{aq})}]}{C_\mathsf{T}} = \frac{[\mathsf{H}^+]^2}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}$$

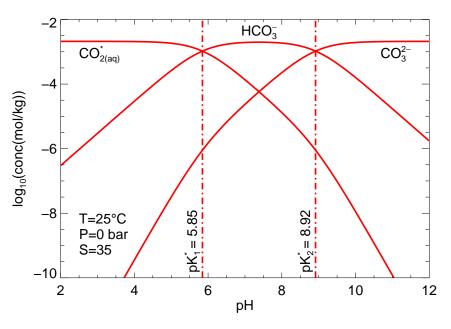

$$\frac{[\mathsf{HCO}^-_3]}{C_\mathsf{T}} = \frac{K_1^*[\mathsf{H}^+]}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}$$

$$\frac{[\mathsf{CO}^{2^-}_3]}{C_\mathsf{T}} = \frac{K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}$$

$$p\mathsf{H} \text{ plays a central role for the }$$

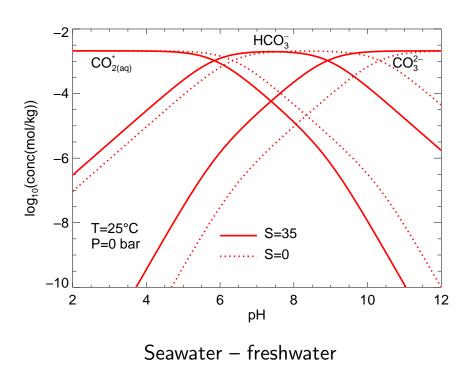
$$speciation \text{ of the } \mathsf{CO}_2\text{-HCO}^-_3\text{-CO}^{2^-}_3 \text{ system}$$

Speciation: Bjerrum Plot


Guy Munhoven

Chemical Equilibria and pH Calculations

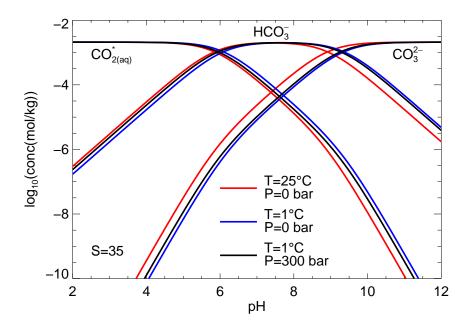
Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?


Chemical Equilibria pH Scales
Speciation
Alkalinity

Speciation: Bjerrum Plot

Points d'équivalence

Speciation: Bjerrum Plot


Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

Speciation: Temperature and Pressure Effects

Temperate and cold surface waters, deep water (3000 m)

Carbonate Chemistry

Special Roles of Different Species

- CO_{2(aq)}: air-sea exchange
- CO₃²⁻: carbonate dissolution

Measurables

- CO_{2(aq)}: by IR absorption (under favourable conditions)
- pH: after consideration of all the complications
- \circ CO₃²⁻: UV spectrophotometry of Pb(II) complexation
- \bullet C_T : by degassing via acidification
- Alkalinity: by titration with a strong acid (e.g., HCI)

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

State Variables of the Carbonate System

- H⁺ (or pH), CO_{2(aq)} (or pCO_2) and CO₃²⁻ are the only species participating in the carbonate equilibria that can be directly measured
- Neither H^+ nor pCO $_2$ nor CO_3^{2-} are conservative: variations are not only controlled by sources and sinks in the system, but also by other state variables of the system (temperature, pressure) or other solutes, . . .

$$\Rightarrow$$
 pH , pCO₂ and CO₃²⁻ are unsuitable as state variables in models

- \bullet C_T is conservative and measurable
- 4 unknowns and 2 equilibrium relationships would require a second conservative and measurable parameter . . . alkalinity

Alkalinity: a First Tour

- Alkalinity measures the capacity of a solution to neutralize acid to the bicarbonate equivalence point (where $[HCO_3^-] = [H^+]$), also called *second equivalence point*
- Measured by titration of a sample with a strong acid (generally HCl) until the equivalence point is reached; the titration curve (evolution of pH as a function of the added amount of acid) has an inflection point at this point, which must be determined with precision
- The alkalinity of the sample is then defined as the mole equivalent of acid added to reach the equivalence point
 at the equivalence point, alkalinity is reduced to zero

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

Alkalinity: Exact Definition

Dickson (1981):

"The total alkalinity of a natural water is thus defined as the number of moles of hydrogen ion equivalent to the excess of proton acceptors (bases formed from weak acids with a dissociation constant $K \leq 10^{-4.5}$, at $25^{\circ}C$ and zero ionic strength) over proton donors (acids with $K > 10^{-4.5}$) in one kilogram of sample."

$$\mathsf{Alk}_\mathsf{T} := \sum_i [\mathsf{proton} \ \mathsf{acceptor}_i] - \sum_j [\mathsf{proton} \ \mathsf{donor}_j]$$

Notice that

$$K \le 10^{-4.5} \Leftrightarrow pK \ge 4.5$$
 and $K > 10^{-4.5} \Leftrightarrow pK < 4.5$

Alkalinity Contributions: Carbonic Acid Example

Carbonic Acid H₂CO₃

$$H_2CO_3 \rightleftharpoons HCO_3^- + H^+, \qquad pK_{C1} = 6.3$$

 $pK_{C1} \ge 4.5 \Rightarrow \text{base is an acceptor, contributing } + [HCO_3^-]$

Bicarbonate ion HCO₃

$$HCO_3^- \rightleftharpoons CO_3^{2-} + H^+, \qquad pK_{C2} = 10.3$$

 $pK_{C2} \ge 4.5 \Rightarrow$ base is an acceptor, contributing $+2 \times [CO_3^{2-}]$: by accepting a proton, the base CO_3^{2-} is converted to HCO_3^- , another acceptor, which must also be accounted for.

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

Alkalinity Contributions: Phosphoric Acid Example

Orthophosphoric Acid H₃PO₄

$$H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+, \qquad pK_{P1} = 2.1$$

 $pK_{P1} < 4.5 \Rightarrow$ acid is a donor and contributes $-[H_3PO_4]$

Dihydrogen phosphate H₂PO₄

$$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+, \qquad pK_{P2} = 7.2$$

 $pK_{P2} \ge 4.5 \Rightarrow$ base is an acceptor and contributes $+[HPO_4^{2-}]$

Hydrogen phosphate HPO₄²⁻

$$HPO_4^{2-} \rightleftharpoons PO_4^{3-} + H^+, \qquad pK_{P3} = 12.7$$

 $pK_{P3} \ge 4.5 \Rightarrow$ base is an acceptor, contributing $+2 \times [PO_4^{3-}]$

Alkalinity

Acide	pK_A	Type provided	Species	H^+ eq/mol
H ₂ O	14.0	acceptor	OH ⁻	[OH ⁻]
H_2CO_3	6.3	acceptor	HCO_3^-	$[HCO_3^-]$
HCO_3^-	10.3	acceptor	CO_3^{2-}	$2 \times [CO_3^{2-}]$
$B(OH)_3$	9.2	acceptor	$B(O\check{H})^4$	$[B(OH)_4^-]$
$HSO^\mathtt{4}$	2.0	donor	HSO^{-1}_4	$-[HSO^{\dot{-}}_4]$
HF	3.2	donor	HF	_[HF]
H^+		donor	H^+	$-[H^+]$
H_3PO_4	2.1	donor	H_3PO_4	$-[H_3PO_4]$
$H_2PO_4^-$	7.2	acceptor	$HPO^{2-}_\mathtt{4}$	$[HPO_4^{2-}]$
HPO4	12.7	accepteur	PO₄ ¹	$2 \times [PO_4^{3-}]$
H_4SiO_4	9.7	acceptor	$H_3SiO_4^-$	$[H_3SiO_4^-]$
H_2S	7.0	acceptor	HS ⁻	[HS ⁻]
$H\bar{S}^-$	12.0	acceptor	S^{2-}	$2 \times [S^{2-}]$
NH_4^+	9.3	acceptor	NH_3	[NH ₃]
·		·	·	·

Compiled from data reported by Dickson (1981)

Guy Munhoven	Chemical	Equilibria a	and pH	Calculations
--------------	----------	--------------	--------	--------------

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Chemical Equilibria pH Scales
Speciation
Alkalinity

Alkalinity in Detail

We thus obtain the following expression for alkalinity

$$\begin{aligned} \mathsf{AIk_T} &= [\mathsf{HCO}_3^-] + 2 \times [\mathsf{CO}_3^{2-}] + [\mathsf{B}(\mathsf{OH})_4^-] + [\mathsf{OH}^-] \\ &+ [\mathsf{HPO}_4^{2-}] + 2 \times [\mathsf{PO}_4^{3-}] + [\mathsf{H}_3\mathsf{SiO}_4^-] \\ &+ [\mathsf{NH}_3] + [\mathsf{HS}^-] + 2 \times [\mathsf{S}^{2-}] + \dots \\ &- [\mathsf{H}^+]_\mathsf{F} - [\mathsf{HSO}_4^-] - [\mathsf{HF}] - [\mathsf{H}_3\mathsf{PO}_4] - \dots \end{aligned}$$

where the ... stand for the concentrations of additional negligible proton donors and acceptors.

Alkalinity in Practice

Alkalinity can generally be approximated to excellent precision by

$$Alk_T \simeq [HCO_3^-] + 2 \times [CO_3^{2-}] + [B(OH)_4^-] + [OH^-] - [H^+] \equiv Alk_{CBW}$$

Often, it is even sufficient to adopt

$$\mathsf{Alk}_\mathsf{T} \simeq [\mathsf{HCO}_3^-] + 2 \times [\mathsf{CO}_3^{2-}] + [\mathsf{B}(\mathsf{OH})_4^-] \equiv \mathsf{Alk}_\mathsf{CB}$$

However, under certain particular conditions, it may be necessary to take additional contributors into account, such as, e.g., the conjugate bases of phosphoric or silicic acids

Guy Munhoven	Chemical Equilibria and pH Calculations
Introduction	Chemical Equilibria
Carbonate Chemistry	pH Scales
pH Calculation	Speciation
Alkalinity: A Conservative Variable?	Alkalinity

Alkalinity: a Few Comments

- Alkalinity is a complex concept, with an opaque definition
- In the literature, there are alternative definitions based upon electroneutrality, that define alkalinity as being equal to the charge difference between conservative cations and anions
- Alkalinity defined this way
 - is also conservative (by construction);
 - neglects contributions from non charged bases (e. g., NH₃) that may be important under some conditions (e. g., anoxic waters)
 - is equal to total alkalinity up to a sum of total concentrations (total phosphate, ammonium, sulphate), that are often, but not always, negligible
 - makes the concept even more confusing

Total Alkalinity: Properties

- Total alkalinity is conservative
 - affected by the precipitation and the dissolution of minerals

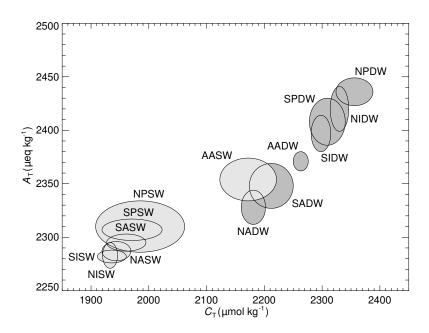
$$CaCO_3 \leftrightharpoons Ca^{2+} + CO_3^{2-}$$

not affected by the dissolution of gaseous CO₂ in water

$$CO_{2(g)} + H_2O \rightleftharpoons HCO_3^- + H^+$$

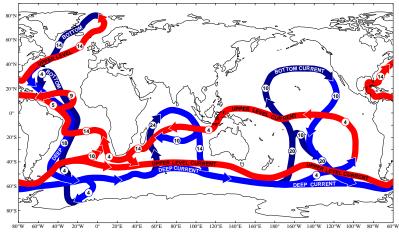
- mixing two water samples, with masses M_1 and M_2 , and total alkalinities A_1 and A_2 , resp., produce a mixture of mass $M = M_1 + M_2$ and total alkalinity A, such that $MA = M_1A_1 + M_2A_2$
- The dominant alkalinity fraction in the most natural waters is carbonate alkalinity

$$Alk_C = [HCO_3^-] + 2 \times [CO_3^{2-}]$$

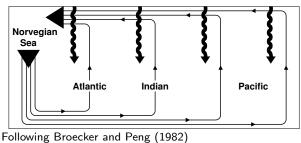

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?


Chemical Equilibria pH Scales
Speciation
Alkalinity

C_T and Alk_T in the Ocean



DIC: Dissolved Inorganic Carbon

C_T and Alk_T in the Ocean: Origin of Gradients

Vertical gradients

Guy Munhoven

Chemical Equilibria and pH Calculations

Inter-basin

gradients

Introduction Carbonate Chemistry pH Calculation Alkalinity: A Conservative Variable?

Posing the problem Procedure General Acid-Base System

Calculating pH and Speciation From Alk_T and C_T

Posing the problem

select an appropriate approximation, such as, e.g.,

$$Alk_T \simeq [HCO_3^-] + 2 \times [CO_3^{2-}] + [B(OH)_4^-] + [OH^-] - [H^+]$$

- \bullet Alk_T, B_T and C_T are given
- temperature, salinity and pressure given
- determine
 - solution pH
 - $[CO_{2(aq)}^*]$, $[HCO_3^-]$, $[CO_3^{2-}]$ (speciation) CO_2 partial pressure in the atmosphere
 - in equilibrium with the solution (pCO₂)
- \Rightarrow express each concentration as a function of $[H^+]$...

Carbonate System Speciation

$$C_{\mathsf{T}} = [\mathsf{CO}_{2(\mathsf{aq})}^*] + [\mathsf{HCO}_3^-] + [\mathsf{CO}_3^{2-}]$$

$$CO_{2(aq)}^* + H_2O \implies H^+ + HCO_3^- \qquad K_1^* = \frac{[H^+][HCO_3^-]}{[CO_{2(aq)}^*]}$$
 $HCO_3^- \implies H^+ + CO_3^{2-} \qquad K_2^* = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$

 K_1^* and K_2^* (stoichiometric) equilibrium constants

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Carbonate System Speciation

$$\begin{split} \mathcal{K}_{1}^{*} &= \frac{[\mathsf{H}^{+}][\mathsf{HCO}_{3}^{-}]}{[\mathsf{CO}_{2(\mathsf{aq})}^{*}]} \quad \Rightarrow \quad [\mathsf{HCO}_{3}^{-}] = \frac{\mathcal{K}_{1}^{*}}{[\mathsf{H}^{+}]} \; [\mathsf{CO}_{2(\mathsf{aq})}^{*}] \\ \mathcal{K}_{2}^{*} &= \frac{[\mathsf{H}^{+}][\mathsf{CO}_{3}^{2-}]}{[\mathsf{HCO}_{3}^{-}]} \quad \Rightarrow \quad [\mathsf{CO}_{3}^{2-}] = \frac{\mathcal{K}_{2}^{*}}{[\mathsf{H}^{+}]} \; [\mathsf{HCO}_{3}^{-}] \\ &= \frac{\mathcal{K}_{1}^{*} \mathcal{K}_{2}^{*}}{[\mathsf{H}^{+}]^{2}} \; [\mathsf{CO}_{2(\mathsf{aq})}^{*}] \end{split}$$

Hence

$$C_{T} = [CO_{2(aq)}^{*}] + \frac{K_{1}^{*}}{[H^{+}]}[CO_{2(aq)}^{*}] + \frac{K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2}}[CO_{2(aq)}^{*}]$$

$$= [CO_{2(aq)}^{*}] \frac{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2}}$$

Carbonate System: Speciation Relationships

Accordingly

$$[CO_{2(aq)}^*] = \frac{[H^+]^2}{[H^+]^2 + K_1^*[H^+] + K_1^*K_2^*} C_T.$$

Since

$$[\mathsf{HCO}_3^-] \ = \ \frac{\mathcal{K}_1^*}{[\mathsf{H}^+]}[\mathsf{CO}_{2(\mathsf{aq})}^*] \quad \mathsf{and} \quad [\mathsf{CO}_3^{2-}] \ = \ \frac{\mathcal{K}_1^*\mathcal{K}_2^*}{[\mathsf{H}^+]^2}[\mathsf{CO}_{2(\mathsf{aq})}^*]$$

we furthermore get

$$[HCO_{3}^{-}] = \frac{K_{1}^{*}[H^{+}]}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}} C_{T}$$

$$[CO_{3}^{2-}] = \frac{K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}} C_{T}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Borate System Speciation

Total dissolved borate

$$B_{T} = [B(OH)_{3}] + [B(OH)_{4}^{-}]$$

Acid-base equilibrium

$$B(OH)_3 + H_2O \rightleftharpoons H^+ + B(OH)_4^-$$

Equilibrium relationship

$$K_B^* = \frac{[H^+][B(OH)_4^-]}{[B(OH)_3]}$$

Borate System: Speciation Relationships

$$K_{B}^{*} = \frac{[H^{+}][B(OH)_{4}^{-}]}{[B(OH)_{3}]} \Rightarrow [B(OH)_{4}^{-}] = \frac{K_{B}^{*}}{[H^{+}]} [B(OH)_{3}]$$

$$B_{T} = [B(OH)_{3}] + \frac{K_{B}^{*}}{[H^{+}]} [B(OH)_{3}]$$

$$= [B(OH)_{3}] \frac{[H^{+}] + K_{B}^{*}}{[H^{+}]}$$

Hence

$$[B(OH)_3] = \frac{[H^+]}{[H^+] + K_B^*} B_T$$
 and $[B(OH)_4^-] = \frac{K_B^*}{[H^+] + K_B^*} B_T$

Guy Munhoven

Chemical Equilibria and pH Calculations

Carbonate Chemistry

pH Calculation

Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Calculating pH From Alk_T and C_T

Processing of the Alk_T terms related to the carbonate system

$$[HCO_{3}^{-}] = \frac{K_{1}^{*}[H^{+}]}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}} C_{T}$$

$$2[CO_{3}^{2-}] = \frac{2K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}} C_{T}$$

$$[B(OH)_{4}^{-}] = \frac{K_{B}^{*}}{[H^{+}] + K_{B}^{*}} B_{T}$$

$$[OH^{-}] = \frac{K_{W}^{*}}{[H^{+}]}$$

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

- Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$
- First term
 - strictly decreasing with $[H^+]$ for $C_T>0$
 - $\lim_{H^+1\to 0} = 2C_T$
 - $\lim_{[H^+]\to +\infty} = 0$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

- Second term
 - strictly decreasing with $[H^+]$ for $B_T > 0$
 - $\lim_{[H^+]\to 0} = B_T$
 - $\lim_{[\mathsf{H}^+]\to +\infty} = 0$
- Third and fourth terms
 - strictly decreasing with [H⁺]
 - $\lim_{[H^+]\to 0} = +\infty$
 - $\lim_{[H^+]\to +\infty} = -\infty$

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$ and

- f strictly decreasing with [H⁺]
- f unbounded: $\sup = +\infty$, $\inf = -\infty$
- \Rightarrow one and only one positive root for any Alk_T.

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

Root H has an intrinsic lower bound:

- ullet consider the infimum of non-water alkalinity: $A_{nWinf}=0$
- let H_{inf} be the positive root of $A_{nWinf} + \frac{K_W^*}{H_{inf}} H_{inf} Alk_T = 0$
- $f(H_{inf}) > A_{nWinf} + \frac{K_W^*}{H_{inf}} H_{inf} Alk_T = 0$
- accordingly: $H_{inf} < H \dots$

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

 \dots and the root H has an intrinsic upper bound:

consider the supremum of non-water alkalinity:

$$A_{\text{nWsup}} = 2C_{\text{T}} + B_{\text{T}}$$

• let H_{sup} be the positive solution of

$$A_{\text{nWsup}} + \frac{K_{\text{W}}^*}{H} - H - \text{Alk}_{\text{T}} = 0$$

•
$$f(H_{sup}) < A_{nWsup} + \frac{K_W^*}{H_{sup}} - H_{sup} - Alk_T = 0$$

$$\Rightarrow H_{inf} < H < H_{sup}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

- Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$ and
 - f strictly decreasing with [H⁺]
 - f unbounded: $sup = +\infty$, $inf = -\infty$
 - \Rightarrow one and only one positive root for any Alk_T.
- Root can be intrinsically bracketed
- Equation can be reliably solved for [H⁺] by a hybrid
 Newton-Raphson-bisection method (convergence guaranteed)

Calculating pH From Alk_T, C_T, and Further Systems

- Add contributions, e.g., from the phosphate system
- $Alk_P = [HPO_4^{2-}] + 2 \times [PO_4^{3-}] [H_3PO_4]$
- Needs speciation relationships for complex acid-base systems

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

General Acid-Base System

• Dissociation reactions of a general n-protic acid H_nA

• K_{A1}^* , K_{A2}^* , ... K_{An}^* (stoichiometric) equilibrium constants

General Acid-Base System

$$\begin{split} \mathcal{K}_{\mathsf{A}1}^* &= \frac{[\mathsf{H}^+][\mathsf{H}_{n-1}\mathsf{A}^-]}{[\mathsf{H}_n\mathsf{A}]} \quad \Rightarrow \quad [\mathsf{H}_{n-1}\mathsf{A}^-] = \frac{\mathcal{K}_{\mathsf{A}1}^*}{[\mathsf{H}^+]} \; [\mathsf{H}_n\mathsf{A}] \\ \mathcal{K}_{\mathsf{A}2}^* &= \frac{[\mathsf{H}^+][\mathsf{H}_{n-2}\mathsf{A}^{2-}]}{[\mathsf{H}_{n-1}\mathsf{A}^-]} \quad \Rightarrow \quad [\mathsf{H}_{n-2}\mathsf{A}^{2-}] = \frac{\mathcal{K}_{\mathsf{A}1}^*\mathcal{K}_{\mathsf{A}2}^*}{[\mathsf{H}^+]^2} \; [\mathsf{H}_n\mathsf{A}] \\ \mathcal{K}_{\mathsf{A}3}^* &= \frac{[\mathsf{H}^+][\mathsf{H}_{n-3}\mathsf{A}^{3-}]}{[\mathsf{H}_{n-2}\mathsf{A}^{2-}]} \quad \Rightarrow \quad [\mathsf{H}_{n-3}\mathsf{A}^{3-}] = \frac{\mathcal{K}_{\mathsf{A}1}^*\mathcal{K}_{\mathsf{A}2}^*\mathcal{K}_{\mathsf{A}3}^*}{[\mathsf{H}^+]^3} \; [\mathsf{H}_n\mathsf{A}] \\ &\vdots \qquad \qquad \vdots \\ \mathcal{K}_{\mathsf{A}n}^* &= \frac{[\mathsf{H}^+][\mathsf{A}^{n-}]}{[\mathsf{H}\mathsf{A}^{(n-1)-}]} \quad \Rightarrow \quad [\mathsf{A}^{n-}] = \frac{\mathcal{K}_{\mathsf{A}1}^*\mathcal{K}_{\mathsf{A}2}^*\dots\mathcal{K}_{\mathsf{A}n}^*}{[\mathsf{H}^+]^n} \; [\mathsf{H}_n\mathsf{A}] \end{split}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

General Acid-Base System: Speciation Relationships

Let $A_T = [H_n A] + ... + [A^{n-}]$ denote the concentration of total dissolved $H_n A$. By summing all the previous equations, we get

$$A_{\mathsf{T}} = \left(1 + \frac{K_{\mathsf{A}1}^*}{[\mathsf{H}^+]} + \frac{K_{\mathsf{A}1}^* K_{\mathsf{A}2}^*}{[\mathsf{H}^+]^2} + \ldots + \frac{K_{\mathsf{A}1}^* K_{\mathsf{A}2}^* \cdots K_{\mathsf{A}n}^*}{[\mathsf{H}^+]^n}\right) [\mathsf{H}_n \mathsf{A}]$$

Hence

$$A_{\mathsf{T}} = \frac{[\mathsf{H}^+]^n + \mathcal{K}_{\mathsf{A}1}^* [\mathsf{H}^+]^{n-1} + \mathcal{K}_{\mathsf{A}1}^* \mathcal{K}_{\mathsf{A}2}^* [\mathsf{H}^+]^{n-2} + \ldots + \mathcal{K}_{\mathsf{A}1}^* \mathcal{K}_{\mathsf{A}2}^* \cdots \mathcal{K}_{\mathsf{A}n}^*}{[\mathsf{H}^+]^n} \ [\mathsf{H}_n \mathsf{A}]$$

and thus finally

$$[\mathsf{H}_n\mathsf{A}] = \frac{[\mathsf{H}^+]^n}{[\mathsf{H}^+]^n + K_{\mathsf{A}1}^*[\mathsf{H}^+]^{n-1} + K_{\mathsf{A}1}^*K_{\mathsf{A}2}^*[\mathsf{H}^+]^{n-2} + \ldots + K_{\mathsf{A}1}^*K_{\mathsf{A}2}^* \cdots K_{\mathsf{A}n}^*} \ A_\mathsf{T}$$

General Acid-Base System

The fractions of undissociated acid and of the dissociated forms $H_{n-1}A^-$, $H_{n-2}A^{2-}$, ..., A^{n-} then alternately write

$$\frac{[\mathsf{H}_{n}\mathsf{A}]}{A_{\mathsf{T}}} = \frac{[\mathsf{H}^{+}]^{n}}{[\mathsf{H}^{+}]^{n} + \mathsf{K}_{\mathsf{A}1}^{*}[\mathsf{H}^{+}]^{n-1} + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*}[\mathsf{H}^{+}]^{n-2} + \dots + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*} \dots \mathsf{K}_{\mathsf{A}n}^{*}}}{\vdots}$$

$$\frac{[\mathsf{H}_{n-j}\mathsf{A}^{j-}]}{A_{\mathsf{T}}} = \frac{\mathsf{K}_{\mathsf{A}1}^{*} \cdots \mathsf{K}_{\mathsf{A}j}^{*}[\mathsf{H}^{+}]^{n-j}}{[\mathsf{H}^{+}]^{n} + \mathsf{K}_{\mathsf{A}1}^{*}[\mathsf{H}^{+}]^{n-1} + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*}[\mathsf{H}^{+}]^{n-2} + \dots + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*} \dots \mathsf{K}_{\mathsf{A}n}^{*}}}{\vdots}$$

$$\frac{[\mathsf{A}^{n-}]}{\mathsf{A}_{\mathsf{T}}} = \frac{\mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*} \cdots \mathsf{K}_{\mathsf{A}n}^{*}}{[\mathsf{H}^{+}]^{n-1} + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*}[\mathsf{H}^{+}]^{n-2} + \dots + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*} \dots \mathsf{K}_{\mathsf{A}n}^{*}}}{[\mathsf{H}^{+}]^{n} + \mathsf{K}_{\mathsf{A}1}^{*}[\mathsf{H}^{+}]^{n-1} + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*}[\mathsf{H}^{+}]^{n-2} + \dots + \mathsf{K}_{\mathsf{A}1}^{*}\mathsf{K}_{\mathsf{A}2}^{*} \dots \mathsf{K}_{\mathsf{A}n}^{*}}}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Carbonate Chemistry

pH Calculation

Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Phosphate System Speciation ...

Application to the phosphate system: n = 3

$$\begin{array}{rcl} P_{\mathsf{T}} &=& [\mathsf{H}_{3}\mathsf{PO}_{4}] + [\mathsf{H}_{2}\mathsf{PO}_{4}^{-}] + [\mathsf{PPO}_{4}^{2-}] + [\mathsf{PO}_{4}^{3-}] \\ [\mathsf{H}_{3}\mathsf{PO}_{4}] &=& \frac{[\mathsf{H}^{+}]^{3}}{[\mathsf{H}^{+}]^{3} + K_{\mathsf{P}1}^{*}[\mathsf{H}^{+}]^{2} + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}[\mathsf{H}^{+}] + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}K_{\mathsf{P}3}^{*}} P_{\mathsf{T}} \\ [\mathsf{H}_{2}\mathsf{PO}_{4}^{-}] &=& \frac{K_{\mathsf{P}1}^{*}[\mathsf{H}^{+}]^{2}}{[\mathsf{H}^{+}]^{3} + K_{\mathsf{P}1}^{*}[\mathsf{H}^{+}]^{2} + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}[\mathsf{H}^{+}] + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}K_{\mathsf{P}3}^{*}} P_{\mathsf{T}} \\ [\mathsf{H}\mathsf{PO}_{4}^{2-}] &=& \frac{K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}[\mathsf{H}^{+}]}{[\mathsf{H}^{+}]^{3} + K_{\mathsf{P}1}^{*}[\mathsf{H}^{+}]^{2} + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}[\mathsf{H}^{+}] + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}K_{\mathsf{P}3}^{*}} P_{\mathsf{T}} \\ [\mathsf{PO}_{4}^{3-}] &=& \frac{K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}K_{\mathsf{P}3}^{*}}{[\mathsf{H}^{+}]^{3} + K_{\mathsf{P}1}^{*}[\mathsf{H}^{+}]^{2} + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}[\mathsf{H}^{+}] + K_{\mathsf{P}1}^{*}K_{\mathsf{P}2}^{*}K_{\mathsf{P}3}^{*}} P_{\mathsf{T}} \end{array}$$

... and Phosphate Alkalinity

$$\begin{aligned} \mathsf{Alk}_\mathsf{P} &= -[\mathsf{H}_3\mathsf{PO}_4] + [\mathsf{HPO}_4^{2-}] + 2[\mathsf{PO}_4^{3-}] \\ &= \frac{-[\mathsf{H}^+]^3 + K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* [\mathsf{H}^+] + 2K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* K_{\mathsf{P}3}^*}{[\mathsf{H}^+]^3 + K_{\mathsf{P}1}^* [\mathsf{H}^+]^2 + K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* [\mathsf{H}^+] + K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* K_{\mathsf{P}3}^*} P_\mathsf{T} \\ &= \left(\frac{K_{\mathsf{P}1}^* [\mathsf{H}^+]^2 + 2K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* [\mathsf{H}^+] + 3K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* K_{\mathsf{P}3}^*}{[\mathsf{H}^+]^3 + K_{\mathsf{P}1}^* [\mathsf{H}^+]^2 + K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* [\mathsf{H}^+] + K_{\mathsf{P}1}^* K_{\mathsf{P}2}^* K_{\mathsf{P}3}^*} - 1 \right) P_\mathsf{T} \end{aligned}$$

"-1" \to 1 is the order of the acid dissociation step that defined the last (i. e., the weakest) proton donor

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem Procedure General Acid-Base System

Alkalinity Contribution of a General Acid-Base System

For a general acid-base system $H_nA - H_{n-1}A^- - \dots - A^{n-}$ with dissociation constant pK values pK_1, \dots, pK_n , we have:

$$Alk_{A} = -m[H_{n}A] \cdots - (m-1)[H_{n-1}A^{-}] \cdots - [H_{n-m-1}A^{(m-1)-}] + [H_{n-m+1}A^{(m+1)-}] + \cdots + (n-m)[A^{n-}]$$

where m is an integer such that

•
$$pK_m < 4.5 \le pK_{m+1}$$
 if $pK_1 < 4.5$ and $pK_n \ge 4.5$

•
$$m = 0$$
 if $pK_1 > 4.5$

•
$$m = n$$
 if $pK_n < 4.5$

Alkalinity Contribution of a General Acid-Base System

Then

$$Alk_A = \sum_{j=0}^{n} (j-m)[H_{n-j}A^{j-}]$$

It was previously established that

$$\frac{[\mathsf{H}_{n-j}\mathsf{A}^{j-}]}{\mathsf{A}_\mathsf{T}} = \frac{\mathsf{K}_{\mathsf{A}1}^* \cdots \mathsf{K}_{\mathsf{A}j}^* [\mathsf{H}^+]^{n-j}}{[\mathsf{H}^+]^n + \mathsf{K}_{\mathsf{A}1}^* [\mathsf{H}^+]^{n-1} + \mathsf{K}_{\mathsf{A}1}^* \mathsf{K}_{\mathsf{A}2}^* [\mathsf{H}^+]^{n-2} + \dots + \mathsf{K}_{\mathsf{A}1}^* \mathsf{K}_{\mathsf{A}2}^* \cdots \mathsf{K}_{\mathsf{A}n}^*}$$

• With $\Pi_j = \prod_{i=0}^j K_{\mathsf{A}i}^*$ and $\Pi_0 = 1$ this can be rewritten

$$[H_{n-j}A^{j-}] = \frac{\prod_{j}[H^{+}]^{n-j}}{\sum_{i=0}^{n}\prod_{j}[H^{+}]^{n-i}}A_{T}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Carbonate Chemistry

pH Calculation

Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System

Alkalinity Contribution of a General Acid-Base System

Hence

$$Alk_{A} = \sum_{j=0}^{n} (j-m) \frac{\prod_{j} [H^{+}]^{n-j}}{\sum_{i=0}^{n} \prod_{i} [H^{+}]^{n-i}} A_{T}$$
$$= \left(\frac{\sum_{j=0}^{n} j \prod_{j} [H^{+}]^{n-j}}{\sum_{j=0}^{n} \prod_{j} [H^{+}]^{n-j}} - m \right) A_{T}$$

For $A_T > 0$ this expression

- is strictly decreasing for [H⁺] > 0;
- has the supremum $\lim_{[H^+]\to 0}=(n-m)A_{\mathsf{T}};$
- has the infimum $\lim_{[H^+]\to +\infty} = -mA_T$.

(Munhoven, GMD 2013)

pH From Alk_T and Arbitrary Acid-Base Systems

General Alkalinity-pH equation

$$Alk_{C}([H^{+}]; C_{T}) + \cdots + Alk_{A}([H^{+}]; A_{T}) + \cdots + \frac{K_{W}^{*}}{[H^{+}]} - [H^{+}] - Alk_{T} = 0$$

- Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$ and
 - f strictly decreasing with [H⁺]
 - f unbounded: $\sup = +\infty$, $\inf = -\infty$
 - \Rightarrow one and only one positive root for any Alk_T.
- Root has intrinsic brackets that can be calculated from the non-water-alkalinity infimum and supremum
- Equation can be reliably solved for [H⁺] by a hybrid
 Newton-Raphson-bisection method (convergence guaranteed)

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

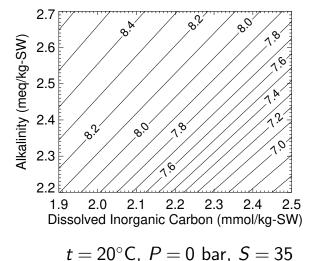
Posing the problem
Procedure
General Acid-Base System

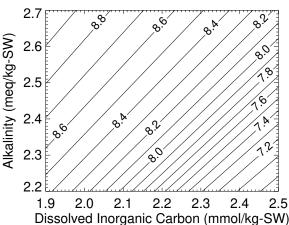
Some Details Skipped

- All dissociation constants must be given on the same pH scale $\Rightarrow [H^+]$ root on that scale
- $\frac{K_W^*}{[H^+]} [H^+]$ should actually read $\frac{K_W^*}{[H^+]} [H^+]_f$
- $[H^+]_f = [H^+]/s$, where s = O(1) ($s \ge 1$) is a scale conversion factor from the free to the working scale (total or seawater)
- Other background acids (HSO₄⁻, HF) to be added as part of their respective acid-base systems
- Initial iterations in pH-Alk space, switching to $[H^+]$ -Alk space when sufficiently close to the root

- Concentrations $[CO_{2(aq)}^*]$, $[HCO_3^-]$, $[CO_3^{2-}]$ can now be calculated from the speciation relationships and $[H^+]$
- pCO₂ is calculated from Henry's Law

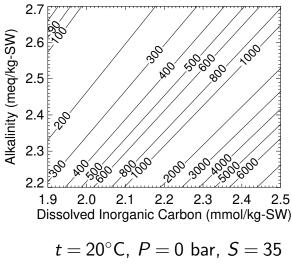
$$\mathsf{p}_{\mathsf{CO}_2} \simeq \mathit{f}_{\mathsf{CO}_2} = \frac{[\mathsf{CO}_{2(\mathsf{aq})}^*]}{\mathit{K}_\mathsf{H}^*}$$

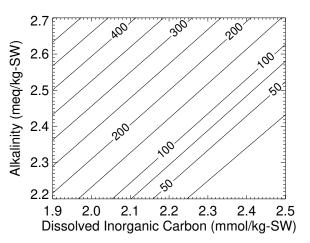

Guy Munhoven


Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem
Procedure
General Acid-Base System


pH as a Function of C_T and Alk_T



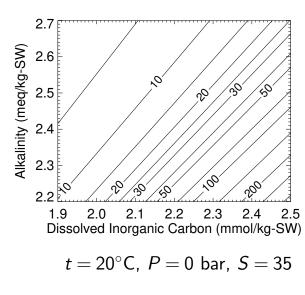
$$t = 1^{\circ}\text{C}, P = 0 \text{ bar}, S = 35$$

pCO_2 and $[CO_3^{2-}]$ as a Function of C_T and Alk_T

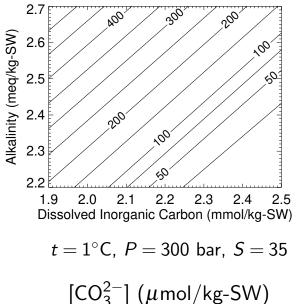
ssolved Inorganic Carbon (mmol/kg-SV
$$t=20^\circ$$
C, $P=0$ bar, $S=35$ $ext{pCO}_2~(\mu ext{atm})$

$$t=1^{\circ}$$
C, $P=300$ bar, $S=35$

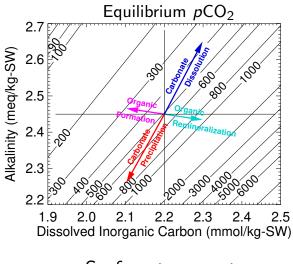
 $[CO_3^{2-}]$ (μ mol/kg-SW)

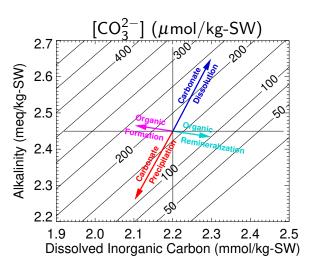

Guy Munhoven

Chemical Equilibria and pH Calculations


Introduction Carbonate Chemistry pH Calculation

Posing the problem Procedure General Acid-Base System


$[CO_2^*]$ and $[CO_3^{2-}]$ as a Function of C_T and Alk_T



 $[CO_2^*]$ (μ mol/kg-SW)

Atmospheric CO_2 and Deep-Sea CO_3^{2-}

Surface temperate

Deep Ocean (3000 m)

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Posing the problem Procedure General Acid-Base System

In Summary

Calculating pH and Chemical Speciation in General

- Determine the total concentrations of all the acid-base systems present
- Chose an adequate approximation for Total Alkalinity
- \bullet Use the speciation relationships to convert the expression for Alk_T to an equation in $[\mathsf{H}^+]$
- Solve that equation (robust and efficient methods available)
- Calculate the speciation of all the systems present from the speciation relationships

Alkalinity, a Conservative Variable? A Detour via Electroneutrality...

Electroneutrality equation for the major (plus a few minor) ions in average seawater:

$$\begin{split} [\mathsf{Na^+}] + 2 [\mathsf{Mg^{2+}}] + 2 [\mathsf{Ca^{2+}}] + [\mathsf{K^+}] + 2 [\mathsf{Sr^{2+}}] \\ - [\mathsf{CI^-}] - [\mathsf{Br^-}] - 2 [\mathsf{SO_4^{2-}}] - [\mathsf{F^-}] \\ - [\mathsf{HCO_3^-}] - 2 [\mathsf{CO_3^{2-}}] - [\mathsf{B}(\mathsf{OH})_4^-] = 0 \end{split}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Electroneutrality

Explicit Conservative Expression of Alkalinity

From Electroneutrality...

Electroneutrality equation for the major ions in average seawater, completed by the missing ion concentrations from alkalinity and nutrients:

$$\begin{split} [\mathsf{Na}^+] + 2 [\mathsf{Mg}^{2+}] + 2 [\mathsf{Ca}^{2+}] + [\mathsf{K}^+] + 2 [\mathsf{Sr}^{2+}] \\ - [\mathsf{CI}^-] - [\mathsf{Br}^-] - 2 [\mathsf{SO}_4^{2-}] - [\mathsf{F}^-] \\ - [\mathsf{HCO}_3^-] - 2 [\mathsf{CO}_3^{2-}] - [\mathsf{B}(\mathsf{OH})_4^-] \\ - [\mathsf{OH}^-] - [\mathsf{H}_3 \mathsf{SiO}_4^-] \\ - [\mathsf{H}_2 \mathsf{PO}_4^-] - 2 [\mathsf{HPO}_4^{2-}] - 3 [\mathsf{PO}_4^{3-}] \\ - [\mathsf{NO}_3^-] + [\mathsf{NH}_4^+] - [\mathsf{HS}^-] - 2 [\mathsf{S}^{2-}] \\ + [\mathsf{H}^+]_\mathsf{F} - [\mathsf{HSO}_4^-] = 0 \end{split}$$

... to Alkalinity

Collect the alkalinity components at the right-hand side and complete by the missing chargeless contributions :

$$[\text{Na}^{+}] + 2[\text{Mg}^{2+}] + 2[\text{Ca}^{2+}] + [\text{K}^{+}] + 2[\text{Sr}^{2+}]$$

$$-[\text{CI}^{-}] - [\text{Br}^{-}] - 2[\text{SO}_{4}^{2-}] - [\text{F}^{-}] - [\text{HF}]$$

$$-[\text{H}_{2}\text{PO}_{4}^{-}] - [\text{HPO}_{4}^{2-}] - [\text{PO}_{4}^{3-}] - [\text{H}_{3}\text{PO}_{4}]$$

$$-2[\text{HSO}_{4}^{-}] - [\text{NO}_{3}^{-}] + [\text{NH}_{4}^{+}] + [\text{NH}_{3}] - [\text{HNO}_{3}]$$

$$= [\text{HCO}_{3}^{-}] + 2[\text{CO}_{3}^{2-}] + [\text{B}(\text{OH})_{4}^{-}] + [\text{OH}^{-}]$$

$$+[\text{HPO}_{4}^{2-}] + 2[\text{PO}_{4}^{3-}] + [\text{H}_{3}\text{SiO}_{4}^{-}]$$

$$+[\text{HS}^{-}] + 2[\text{S}^{2-}] + [\text{NH}_{3}]$$

$$-[\text{H}^{+}]_{\text{F}} - [\text{HSO}_{4}^{-}] - [\text{HF}] - [\text{H}_{3}\text{PO}_{4}] - [\text{HNO}_{3}]$$

$$= A_{\text{T}}$$

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Electroneutrality
Explicit Conservative Expression of Alkalinity

The Explicit Conservative Expression of Alkalinity

The *explicit conservative* expression of alkalinity, Alk_{EC}, then follows from the left-hand side of the previous equation:

$$Alk_{EC} = [Na^{+}] + 2[Mg^{2+}] + 2[Ca^{2+}] + [K^{+}] + 2[Sr^{2+}]$$
$$-[Cl^{-}] - [Br^{-}]$$
$$-2TSO_{4} - THF - TPO_{4} - TNO_{3} + TNH_{3}$$

where

$$TSO_{4} = [HSO_{4}^{-}] + [SO_{4}^{2-}] \quad (= S_{T})$$

$$THF = [HF] + [F^{-}] \quad (= F_{T})$$

$$TPO_{4} = [H_{3}PO_{4}] + [H_{2}PO_{4}^{-}] + [HPO_{4}^{2-}] + [PO_{4}^{3-}] \quad (= P_{T})$$

$$TNO_{3} = [HNO_{3}] + [NO_{3}^{-}]$$

$$TNH_{3} = [NH_{4}^{+}] + [NH_{3}] \quad (Wolf-Gladrow et al., 2007)$$

Explicit Conservative Expression of Alkalinity: Corollaries

- Alk_{EC} shows that Alk_T does not simply reduce to the charge difference between conservative cations and anions
 - "conservative ion" sometimes ambiguous (e. g., Sr^{2+} , Ca^{2+})
 - surface-to-deep-sea alkalinity gradients would have to be proportional to salinity
 - important role of nutrients
- Alk_{EC} allows to quantify the effect of biogeochemical processes on alkalinity more easily
- Alk_{EC} clearly shows the conservative nature of Alk_T
 - \bullet each single term unaffected by pH, pressure and temperature changes

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?

Electroneutrality
Explicit Conservative Expression of Alkalinity

References Cited and Recommended

- Broecker W. S. and Peng T.-H. (1982) Tracers in the Sea, Eldigio Press, Palisades, NY. 690 pp.
- Dickson A. G. et al. (2007) Guide to Best Practices for Ocean CO₂
 Measurements, PICES Special Publication 3, 191 pp.
- Dickson A. G. (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res., 28A(6):609-623.
- Dickson A. G. (1984) pH scales and proton-transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta 48:2299–2308.
- Gruber N. and J. Sarmiento (2006) Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, NJ. 503 pp.
- Munhoven G. (2013) Mathematics of the total alkalinity-pH equation pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1.
 Geoscientif. Model Dev. 6, 1367–1388.
- Wolf-Gladrow D. A. et al. (2007) Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. *Mar. Chem.* 106, 287–300.
- Zeebe R. and D. Wolf-Gladrow (2003) CO₂ in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam. 346 pp.